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WAVEVECTOR-FREQUENCY ANALYSIS WITH APPLICATIONS TO ACOUSTICS

CHAPTER 1

INTRODUCTION

This monograph presents an approach to the description and analysis of

acoustic fields and systems that parallels the approach developed in signal

processing and linear systems theories to describe and analyze electrical and

communications signals and systems.) This approach, called wavevector-

frequency analysis, is complementary to traditional methods of acoustics.

Wavevector-frequency analysis is simply the description of a space-time

field or system in terms of the Fourier conjugates of the independent spatial

and temporal variables of the field or system. The wavevector is the Fourier

conjugate of the spatial vector variable and the frequency is the conjugate of

the time variable.

The primary advantage of expressing the acoustic field in terms of

wavevector and frequency, rather than space and time, is that the Fourier

transformation otten simpilties the mdtrlemdtlLdl description of the field or

acoustic system, thereby facilitating mathematical analysis and physical

interpretation.

Tne formalism of this approach to acousLics Eau1ve r the course of an

extended research effort to understand and characterize certain acoustic

fields associated with turbulent flow. A brief history of this research

effort will put the evolution of this approach in perspective.

1.1 HISTORY AND PERSPECTIVE

'he prpssure and vibrational fields associated with turbulent flow over

various vehicles have been the subject of continuing research over the past 30

I years. Turbulent flow is a random process in space and time. Therefore, the

°: ...... . .... *- -* .. . . . . .. •
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turbulent pressure and turbulent flow-excited vibration fields are also random

functions of space and time. The description, measurement, and analysis of

these random fields requires knowledge of statistics and signal processing.

The physics of turbulent flow, however, is the domain of the hydrodynamicist.

The vibration of structural elements of the vehicles requires knowledge of

elasticity and random vibrations. The acoustician desires descriptions and

models of the pressure and vibrational fields to predict the noise in the

near- and farfields of the vehicle. By necessity, therefore, the study of

flow and flow-induced noise was an interdisciplinary effort.

As might De expected, the cooperative effort between researchers in these

*different specialties over a long period of time led to extensive cross-

fertilization among disciplines. This cross-fertilization resulted in an

entirely new set of specialties in the field of acoustics. The combinations

- of disciplines comprising the best known of these new specialties, hydro-

* acoustics and aeroacoustics, are evident from their names. Some combinations

of disciplines, however, did not lead to such descriptive names nor to such

*/ widespread recognition. One such combination is the subject of this monograph.

The name wavevector-frequency analysis designates the specialized

, extension of traditional signal processing and linear systems theories

developed, over the course of this research effort, to describe and analyze

the turbulent pressure and turbulent flow-excited vibration fields.

Traditional signal processing and linear system theories were developed for

electrical and communication systems problems, in which the fields of interest

are functions of the single independent variable, time. In linear systems

theory, it is demonstrated that Fourier transformation of these temporal

fields into corresponding fields in frequency (the Fourier conjugate of the

time variable) often simplifies the mathematical Gescription of the system

and, thereby, facilitates physical prediction or interpretation of the

system. To exploit these potential advantages for empirical investigations,

the signal processor developed techniques to determine or measure the

frequency characteristics of random and deterministic time fields. To

describe and analyze the space-time fields associated with turbulent flow and

flow-excited v'brations, it was necessary to extend these traditional theories

- -2
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to 4nciude the spatial coordinates, or spatial position vector, as an

additional independent field variable.

The advantages of Fourier transform techniques for analysis and

interpretation of linear systems had long been recognized by researchers in

other branches of physics, including those in acoustics. The pressure and

velocity fields encountered in acoustics are functions of both space and

time. Therefore, to obtain Fourier-transformed descriptions of acoustic

fields, it was necessary to define a Fourier conjugate of the spatial position

vector as well as the conjugate of the time variable (frequency). The Fourier

conjugate of the spatial vector was defined as the wavevector. Wavevector-

frequency descriptions of acoustic fields were traditionally employed only as

an intermediate step in the theoretical prediction of the space-time

characteristics of these fields. Nonetheless, these theoretical studies

provided a solid basis for the formalized extension of traditional linear

SjS[,, theory to space-time fields. However, because of the introduction of

tho additional vector variable, the signal processor's task of developing the

theory and means of measuring the wavevector-frequency characteristics of

space-time fields was a difficult one.

In 1961, Maidanik and Jorgensen proposed a method for direct

m,,,,,urement of the wavevector-frequency spectrum of the wall pressure

iuctuat ions in a turbulent boundary layer. In 1971, Blake and Chase 2 used

this technique to perform such measurements. The demonstrated ability to

measure the wavevector-frequency characteristics of space-time fields promoted

wavevector-frequency analysis from an interesting, and sometimes useful,

mathematical technique to a potentially powerful tool for interpretation and

analysis of experimental data. It therefore prompted increased research

efforts to develop new techniques for wavevector-frequency measurement and

analysis. These research efforts continue today in a wide variety of

scientific fields dealing with space-timo Fields.

1 . MOTIVAI[ON AND OBJECIIVE

Deosite the demonstrated utility of wavevector-frequency analysis for

charac:terat~on and analysis of the acoustic fields generated by turbulent

1-3
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flow over vehicles, the application of wavevector analysis techniques in

acoustics has been left to the specialist. The motivation for this monograph

is to encourage a wider understanding and application of these powerful

techniques.

One impediment to the adoption of these techniques by the nonspecialist is

the lack of a comprehensive tutorial treatment of wavevector-frequency

analysis. Although the existing theoretical and experimental capabilities in

- this specialty resulted from research conducted in universities, government

laboratories, and private industry, there has been no attempt to organize the

disparate theoretical and experimental results of these research efforts into

a single comprehensive reference source.

The objective of this monograph is to provide a tutorial treatment of

wavevector-frequency analysis and its application to acoustics.

Because the primary purpose of this work is to teach the fundamentals of

wavevector-frequency analysis for acoustic applications, the monograph will

not provide an exhaustive review of the manifold publications of theoretical

and experimental research in this field. Rather, it will meld selected

results from those references into a format that mathematically defines,

pysicaljy interprets, and (where possible) illustrates by experimental data,

the essential aspects of wavevector -frequency analysis. It is expected that

r ,aders interested in a particular topic will use the references cited at the

end of each chapter to expand their sources of information.

1.3 ORGANIZATION

The lV chapters comprising this text treat 5 topics. Basic definitions

and relationships are presented in chapter 2. Chapters 3, 4, and 5 present

linear systems theory for space- and time-invariant, space-varying, and

coupled systems, respectively. Chapters 6 and 7 treat the description of

random space-time fields and the response of linear systems to such random

field,. The problems of measurement and estimation of wavevector-frequency

spectra ire treated in chapters 8 and 9. Chapter 10 presents some

il'ustrative examples of the use of wavevector-frequency analysis techniques.

S14
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1.4 DEPTH AND PREREQUISITES

This monograph is intended as a tutorial source for practicing scientists

and engineers. The level of the material presented is equivalent to that

encountered in a first-year graduate course. The reader is assumed to have a

basic understandiog of acoustics (including vibrations), Fourier transforms

and series, simple generalized functions, and statistics. Although many of

the fundamental concepts in these subjects are reviewed in this book, their

treatment is not rigorous. Rather, such reviews are somewhat cursory and are

only included to reacquaint the reader with certain fundamentals or to improve

the continuity of certain arguments. For rigorous treatments of such

fundamental concepts, the reader should consult standard references on the

appropriate subject.

* 1.5 REFERENCES

1. G. Maidanik and 0. W. Jorgensen, "Boundary Wave-Vector Filters for the

Study of the Pressure Field in a Turbulent Boundary Layer," Journal of

the Acoustical Society of America, vol. 42, no. 2, August 1967,

pp. 494-501.

2. W. K. Blake and D. M. Chase, "Wavenumber-Frequency Spectra of Turbulent

Boundary L-ayer Pressure Measured by Microphone Arrays," Journal of the

Acoustical Society of America, vol. 49, no. 3, March 1971, pp. 862-877.

Ree1-5/1 6
~Reverse Blank



TD 8209

CHAPTER 2

WAVES AND THEIR DESCRIPTORS

This chapter defines, and physically interprets, the parameters used to

describe the spatial and temporal characteristics of harmonic waves. The

mathematical description of an arbitrary wave in terms of these parameters is

developed.

Van Nostrand's Scientific Encyclopedia I defines a wave as a "disturbance

which is propagated in a medium in such a manner that at any point in the

medium the displacement is a function of the time, while at any instant the

displacement at a point is a function of the position of the point." This

general definition establishes that waves are fields in which the variation of

some physical quantity is specified over some region of space and time. Note

that this definition does not require any specific form of the temporal or

spatial variation of the disturbance. However, the word "propagated" implies

some relationship between the spatial and temporal variables. From the above,

it is clear that a wave is not a specific space-time field. Rather, a wave is

an,/ member of a class of space-time fields that describes a disturbance which

propagates in space and time.

One of the simplest waves is the harmonic wave. A harmonic wave is

defined as one in which the disturbance varies sinusoidally in space and

time. We begin our study and characterization of waves with a specific form

of the harmonic wave called the plane harmonic wave.

2.1 THE PLANE HARMONIC WAVE

Consider a disturbance, say the pressure in a fluid, described by

p(7,t) = P exp[i( -; - t)] (2-1)

Here, p denotes the pressure, x [ x x 2,X3] is the spatial position

vector, t desirjnates time, P is a complex constant that represents the

2-1
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S.- amplitude of the disturbance, k [kI ,k k ] is the (constant) wave

vector, w is the (constant) circular frequency, exp z denotes e , k x

denotes the inner (or dot) product of the vectors k and x, and i is the square

root of minus one.

The physical pressure is, of course, a real function of space and time.

Therefore, when expressing the pressure in the complex form of equation (2-1),

we mean that the physical pressure, p r(x,t), is the real part of the complex

function. That is, we mean

Pr (Xt) = Pmag cos(k.x + wt + 0) , (2-2)

where P and 0 are the absolute value and argument of the complex
r<.'.mag

amplitude, P, respectively.

The argument of the cosine in equation (2-2), that is, k-x + wt + 0, is
'A.

defined as the phase of the harmonic wave, and Pmag is the amplitude of the
physical wave. Therefore, the effect of varying the spatial or temporal

coordinates is simply to change the phase of the wave. Note tha + 0 is the

phase of the wave at x = [0,0,0] and t = 0.
sJ.

The period of a harmonic wave is defined as the time difference, T,

between successive repetitions, or cycles, of the wave at a fixed point in

space. Recall that, in equations (2-1) and (2-2), the wavevector and

frequency are constants. Thus, at any fixed point in space, say , the
0"'.pressure varies only with time. That is,

p(-x ,t) = P exp[i(wot kx + o)] (2-3)
0 mag 0

Mathematically, the period is defined as the smallest positive value of T for

* which

p( 0 1,t * T) = p( ,t) (2-4)

* for all t. By equations (2-3) and (2-4), it is clear that the period

- corresponds to the time increment required to increase the phase of the wave

2 2
0...

6I
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by 2ir radians, and it is given by

T = 21/w . (2-5)

It follows, then, that the circular frequency, w, is related to the period by

= 2n/T (2-6)

and is the time rate of change of phase of the wave in radians per second.

A more familiar definition of frequency is the temporal frequency, f,

which is defined as the number of repetitions, or cycles, of the wave per unit

time. One cycle corresponds to a phase change of 2,r radians; thus, the

temporal and circular frequencies are related by

f = w/(2r) = liT (2-7)

By the above, it is evident that both circular and temporal frequency define

the time rate of repetition of the wave. However, this rate is measured in

different units. That is, circular frequency is the time rate of change of

phase, where a phase change of 21r radians is required for one repetition.

Temporal frequency, on the other hand, is the number of repetitions of the

wave per unit time.

An important concept in the description and characterization of harmonic

waves is that of the phase front. A phase front is defined as a surface in

space over which the phase of the wave is constant. According to equations

(2-1) and (2-2), when the phase is constant, the value of the pressure,

p(x,t), is constant. Thus, a phase front corresponds to a surface of constant

pressure in space associated with a particular phase of the wave.

Consider the phase front of the wave defined by equation (2-2) associated

with the constant phase, B. The phase front is then defined by

k-x w ut + o = (2-8)

and is designated as phase front 5. At time t - to , the surface of constant.

2-3
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phase associated with phase front B is given by

k, +t + 0 0 (2-9)

and is a function of _ only. As k is a constant, equation (2-9) defines a

plane in the three-dimensional space, . The constant, B, is arbitrary.

Therefore, all phase fronts of the harmonic wave defined by equations (2-1)

and (2-2) are planes. Consequently, waves having the mathematical form of

equations (2-1) and (2-2) are called plane harmonic waves, and their phase

fronts are often referred to as phase planes.

Let xA and _B be vectors defining two points, A and B, in the phase

plane specified by equation (2-9), as illustrated in figure 2-1.

IA

/
/

x 3

B(
_30. x

PHASE PLANE -
, + 0. + 0

~Figure 2-1. Relative Geometry Between the Wavevector
',: and a Line in the Phase Plane
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The nonzero vector = B - xA then defines a vector in the phase

plane. As both -A and 7B satisfy eqLation (2-9), it follows that

k 0 . (2-10)

Neither k nor is a zero vector. It follows, then, that the wavevector k

is perpendicular to the vector . However, as the vectors _A and 'B are

arbitrary, the vector is also arbitrary. Therefore, the wavevector, k, is

perpendicular to every vector in the phase plane. Consequently, the

wavevector k is perpendicular to the plane of the phase front. Furthermore,

as k is a constant vector, it is clear that all phase planes of our harmonic

wave are parallel.

By taking the time derivative of equation (2-8), we obtain (for constant B)

.. -0
k.v + 0 , (2-11)

where v is the velocity vector of the phase front at any point x and is

defined by

d x
- dt (2-12)

It is evident that there are an infinite number of velocities which satisfy

equation (2-11). However, as ; is a constant, all possible velocity vectors

defined by equation (2-11) must have the same component normal to the phase

front: that is, in the direction parallel to k. If we denote the velocity

normal to the phase front by p, it follows from equation (2-11) that

k = kc cos e= (2-13)p p

where k and c denote the magnitudes of the corresponding vectors and e is
p -

the angle between the vectors k and c . As k and cp are parallel vectors,

it follows from equation (2-13) that e = for w > 0 and e = 0 for w < 0.

fhus, the wavevector, k, is directed opposite to the normal velocity of the

phase front for , > 0 and coincident to the normal velocity of the phase front

for w < 0. Further, as k and w are constants, the normal velocity, p, is a

constant and is given by

2-5
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c'.. Cp - k 2 (2-14)

The velocity c is defined as the phase velocity of the wave and is the

apparent velocity at which the planar phase front propagates through the

medium. The word "apparent" is used because only the normal component of the

velocity of the phase plane effects an apparent change in the spatial location

% of the phase plane; the tangential components produce only in-plane slippage

of the front. For a more comprehensive treatment of the kinematics of

wavefronts, the reader is directed to reference 2.

For a known phase velocity of the plane wave, the wavevector is easily

determined by

-CW
k - (2-15)

2* c
p

Returning our attention to equations (2-1) and (2-2), it is a simple

--. matter to show that, at any fixed time, the pressure field is periodic in

space. That is, a spatial vector k exists such that, at the fixed time to,

p(x + - ,t = p(-X,to) (2-16),%'0

for all x. The nonzero vectors, F, that satisfy equation (2-16) are easily

shown to be those for which

- = 2nr n = ±1, 2, 3 ..... (2-17)

-he allowable values of T in equation (2-17) correspond to all vector

separations between a reference phase plane and a series of other phase

planes. If the phase of the reference plane is 3, the phases associated with

* the other planes are B + 2nv.

The wavelength (or spatial period) is defined as the distance, measured

normal to the phase plane, between successive spatial repetitions of the

. wave. If we denote the wavelength by x and recall that the vector k is normal

2 6

N

' -- - - - - - - - .,. . . . .



W flfw ~ r n -l. . - -. -. . --------------

TD 8209

to the wavefront, it follows from equation (2-17) that

= 2ff/k (2-18)

Thus, for a known wavelength, the magnitude of the wavevector is given by

k = 2 iIr (2-19)

As X is the minimum distance between successive repetitions of the wave and is

measured parallel to k, it follows from equation (2-19) that the wavevector

can be interpreted as the magnitude and direction of the maximum rate of

change of phase in space. This same interpretation of the wavevector can be

obtained by considering the gradient 'f the phase. It is straightforward to

show that the gradient of the phase, which by definition corresponds to the

maximum spatial rate of change of phase, is eq-ual to k.

" By returning our attention to equation (2-17), it is apparent that, if the

vector k is taken parallel to the x1 axis, the distance between successive

repetitions of the wave is

l = 21r/k 1  (2-20)

Ihis distance is defined as the projected wavelength in the x coordinate

direction and is designated by kI. Similarly, projected wavelength

components may be defined in the other two coordinate directions, resulting in

the relationships

XI  = 2n/k I , 2/k , = 21/k (2-21)
1 ' 2 2' 3 3

The magnitude of the three components of the wavevector can therefore be

expressed in terms of the projected wavelength components by

k = 27r/X, k 21/-k k = 21r/X ( -2k = 1 ,2 2 3 3 (2-22)

and can be interpreted as the spatial rate of change of phase in the

* respective coordinate directions.

i

2-7
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Some texts (see reference 3, for example) define the wavenumber components

in terms of the number of cycles of the wave per unit lngth (which

corresponds to k. = I/x, j = 1, 2, 3) rather than the spatial rate of

change of phase implied by equation (2-22). In this text, the wavcvector will

always be defined such that its components are consistent with equation

(2-22). However, if one desires to express the wavenumber components in terms

of cycles per unit length, the conversion is easily made by using arguments

similar to those leading to equation (2-7).

2.2 MATHEMATICAL REVIEW

This section reviews some of the mathematical concepts and techniques that

will be used in the course of this text. The review is included only for the

purpose of reacquainting the reader with these concepts and techniques and for

establishing certain conventions that we shall follow throughout this text.

Therefore, this review will be conducted without any pretense of rigor, and

the reader is encouraged to consult standard texts, as necessary, to

supplement the material presented here.

2.2.1 Fourier Transforms

"he Fourier integral theorem states that a function g(t) can be

rpresented as an integral of its harmonic elements. That is,

-' g(t) f G()exp(it) dw , (2-23)

2 ir

:. where G(w) is the complex amplitude (within a factor of 2v) of each harmonic

element and is given by

G(W) = g(t)exp(-iwt) dt (2-24)

lhe functions g(t) and G(wJ) constitute a Fourier transform pair, and the

variable w is called the Fourier conjugate of the variable t. The placement

02-80•oo
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of the factor of 21 in the definition of the transform pair is, within certain

constraints, arbitrary. The choice in equations (2-23) and (2-24) is

consistent with the convention used by electrical engineers.

" 5

To paraphrase Lighthill, considerable literature has been devoted to

determining the conditions on g(t) sufficient for equations (2-23) and (2-24)

to be valid representations. For the fields, g(t), treated in this text,

equations (2-23) and (2-24) are valid representations.

Sneddon6 shows that the theory of Fourier transforms of functions of a

single variable can be extended to functions of several variables. Thus, wave

fields, which are functions of space and time, may be represented in terms of

multidimensional Fourier transforms. For example, let p(x,t) denote the

space-time field associated with a pressure wave. Then, p(7 ,t) can be

represented by

p(xt) - 1l JJ P(k,()exp[i(k.x + wt)] dk dw (2-25)

where

00

- fp(7,t)exp[-i(k.x + ,t)] d dt (2-26)

In equations (2-25) and (2-26), d ' denotes dx dx 2dx 3 and dk denotes

dk dk 2dk The Fourier conjugate of the spatial vector variable, , is

the wavevector, k, and the Fourier conjugate of the time variable, t, is the

circular frequency, w.

Note that the integrand of equation (2-25) is a harmonic plane wave of the

form of equation (2-1), with a complex amplitude of P(k,w). Thus, it is

evident, by equation (2-25), that expressing the pressure field as a Fourier

transtorm is equivalent to representing that field as a summaLion, or

superposition, of harmonic plane waves, where each harmonic component is

characterized by a distinct wavevector and frequency. lhe wavevector-

2-9
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frequency transform, P( k,w), of the space-time field, p(X,t), can be

interpreted as the relative complex amplitude of each harmonic plane wave

component comprising the pressure field.

It should be emphasized that the components of the wavevector, k, and the

circular frequency, w, are real variables. If we require the wave field

variable (e.g., the pressure in equation (2-25)) to be real also, then we

require that

p(X,t) = p (xt) , (2-27)

where the asterisk denotes the complex conjugate. It follows from equations

(2-25) and (2-27) that, for the pressure to be real,

P(k,,) = P (-k,-W) (2-28)

.hus, the wavevector-frequency transform of a real space-time field has

conjugate symmetry in both wavevector and frequency.

.J..

2.2.2 Generalized Functions
"h

Many of the operations involving Fourier transforms are facilitated by the

use of generalized functions. Further, in some of the chapters to follow,

generalized functions will be used for either notational or mathematical

convenience. Therefore, before proceeding with further discussion of the

Fourier transform and its properties, it is convenient to introduce the three

* generalized functions that will be used repeatedly throughout this text. For

a more rigorous treatment of these generalized functions, the reader is
5 7referred to such texts as Lighthill or Papoulis.

0 The generalized function used most often is the Dirac delta function,
8

- denoted by 6. The delta function is defined by

6(t to) = 0 , for t , to  , (2-29)

and is sufficiently large in the vicinity of t t that
0

a, 2-10
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6(t - to) dt 1 (2-30)

t

where tI < tO < t2. The delta function has the integral property that

- dt = ) (2-31)

where g(t) is any function of t that is continuous at to. By equation (2-31),

it is seen that the delta function can be used to sample a function at any

discrete argument of that function.

The second generalized function we shall use is the Heaviside, or unit step,

function. The Heaviside function, denoted by U, is the indefinite integral of

the Dirac delta function and is defined by the discontinuous function

t
,t t

U(t to) 0 S(y - t0 ) dy = (2-32)
1 t >t

fhe Heav"side function has the integral property that

-:. U(t -to0)g(t) dt = g(t) dt .(2-33)

or 00' -0 to

%,4hpre g(t) is any function that is continuous at t = tO.

The last of the generalized functions we require are the derivatives of
th

the delta function. The n derivative of the delta function is denoted by

(n) dn6(t -t0)

t (t t ) n (2-34)

dtn

2-11
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The derivatives of the delta function have the property that, for any good

function, g(t),
". t2

2 n( (,, d g(to )
.--6(n)(t -to)g(t) dt = (-1)n (2-35)

t0 
dtn

9where t1 < t0 < t2. Lighthill defines a "good" function as one that

is everywhere differentiable any number of times and is such that it and all

its derivatives are, at most, of order jxJN as jxJ approaches infinity for

all N. Thus, a good function decays, for large jxi, faster than any inverse

power of lxJ.

2.2.3 Some Useful Relationships and Interpretations

By use of the generalized functions and the Fourier transform, we may

.de rr some relationships that will be of use in forthcoming chapters.

Further, some of these mathematical relationships can be interpreted in terms

of the composition and characterization of wave fields.

One especially useful relationship is the Fourier transform of the delta

f rrtia)n. If, in equation (2-24), we set

g(t) 6(t - tO) , (2-36)

"* then, equation (2-31), it follows that

G(w) exp(-iwto) (2-37)

From equations (2-23), (2-36), and (2-37), it follows that

,t 2n J^A~,L(t - t0)] dw (2-38)

* A simi ijr relation -.an be developed for (w w

2 -12
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Consider now a wave field (for consistency, we will again use the pressure

field, p(7,t)) that has the Fourier transform

P(k,.) = (2r) 4P0 (k - k0)6( - WO) , (2-39)

where

S(k - _k0) = 6(kI - k01 )(k 2 - k02)6(k3 - k03 ) (2-40)

and P is a complex constant. By equations (2-25), (2-31), (2-39), and

(2-40), it is easily shown that the pressure field resulting from the

wavev6ctor-frequency transform of equation (2-39) is

p(;,t) = P0 exp[i(-k0 " + 0t)
] 

. (2-41)

Equations (2-39) and (2-41) constitute a four-dimensional Fourier transform

pair.

Comparison of equation (2-41) with equation (2-1) reveals that the

pressure field of equation (2-41) is a plane harmonic wave field characterized

by the single wavevector koN the single frequency w0, and the complex

amplitude Po" This example shows distinctly one of the potential advantages

of expressing a wave field in terms of its wavevector-frequency transform.

That is, in this example, the Fourier transform maps the plane harmonic wave

field, which exists over all space and time, into a field in the Fourier

conjugate, or wavevector-frequency, domain, which is nonzero only at a single

point.

A particularly useful property of the Fourier transform is the property of

superposition. That is, if g(t) in equation (2-24) is given by

N

g(t) I gn(t) , (2-42)

n=1

then it follows that

2-13
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* . N

G(W) = Z Gn() (2-43)

n=l

An interesting example of superposition in four dimensions can be illustrated

by considering the pressure field resulting from the wavevector-frequency

spectrum given by

2, 4
P(k,) : 2 - - + 6(k - ] (2-44)

where P0 is a real constant. By equations (2-25) and (2-44), the pressure

i"field is

p(x,t) P0 cos(k0 *X + W0t) (2-45)

0

Note that the pressure field of equation (2-45) is of the form of equation

(2-2), with 0 equal to zero. In this case, the pressure field is seen to be

real, and its wavevector-frequency transform consists of two discrete

components. Note that the Fourier transform of the real-valued pressure field

(equation (2-44)) satisfies the condition of equation (2-28).

At the risk of belaboring a point, we may use the principle of super-

position to substantiate our physical interpretation of the Fourier transform

of equation (2-25). That is, we have shown tha ,  wavevector-frequency

transform comprised of the product of delta functions of the form of

equation (2-39) produces a plane harmonic wave in the space-time domain of the

* form of equation (2-41). By the principle of superposition, then, a transform

comprised of a summation of many different products of delta functions will

produce a space-time field comprised of a summation of the corresponding plane

harmonic waves. Therefore, if we write the transform of the pressure field

in the form of the weighted superposition of products of delta functions,

that is,
'%

P(;,) - P(ff ,Q)&(- ;)6(w - ) d dQ (2-46)0

,- 2 14
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then the resulting pressure field is a weighted superposition of plane

harmonic waves. By equations (2-25) and (2-31), that weighted superposition

of plane waves is given by

p(,t) = (2) -4 JJ P(VQ)exp[i(p. + Qt)] dp dQ , (2-47)

which is merely a restatement of the multidimensional Fourier transform of

equation (2-25). Therefore, the expression of a wave field as the

multidimensional Fourier transform of equation (2-25) can be physically

interpreted as the representation of that wave field as a superposition of

plane harmonic waves. The wavevector-frequency transform of the space-time

wave field represents the relative amplitudes and phases of these various

harmonic wave components.

In the forthcoming chapters, we will often require the Fourier transforms

of temporal or spatial derivatives of fields. Let g(t) be given by equation

(2-23) and define

f(t) = d (2-48)
dt

n

If F(w) denotes the Fourier transform of f(t), it is straightforward to show,

by equations (2-23) and (2-48), that

F(w) = (i ) nG(w) (2-49)

By similar arguments, it may be shown that the inverse Fourier transform of

the nt h derivative of G(w) with respect to w is equal to (-it) ng(t).

An interesting and useful application of equations (2-48) and (2-49) is

illustrated by the following example. Consider the equation

(W2 -2 (2-50)

2-15
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where we wish to determine G(w). By performing the inverse Fourier transform

of equation (2-50) and by utilizing equation (2-48), equation (2-49), and the

principle of superposition, we may show that

g(t) = A exp(io 0 t) + B exp(- 0t) , (2-51)

where A and B are constants. By use of equations (2-24) and (2-38), it

follows that the G(w) satisfying equation (2-50) is given by

G(w) = A(w - 0) + B6(w + w0)  (2-52)

This result will prove useful in forthcoming chapters.

As a final mathematical note, consider the Fourier transform of the

* product of two functions, g(t) and f(t). If the transforms of g and f are

denoted by G and F, we may use equations (2-23) and (2-38) to show that

fg(t)f(t)exp(-it) dt ( 21. - I G(w- Q)F(Q) dQ . (2-53)

The integral on the right-hand side is called the convolution of the functions

G and F. By equation (2-53), it is seen that the Fourier transform of a

product is the convolution of the transforms of the functions making up the

product. By similar arguments, it may be shown that the inverse transform of

a product also results in a convolution. That is,

(21) G(-l)F( )exp(it)d = f(t - )g(e) de (2-54)
f ft

* 2.3 WAVEVEClOR-FREQUENCY DESCRIPTION OF WAVE FIELDS

This section reviews certain physical and mathematical concepts presented

in the first two sections to clarify the rationale for describing wave fields

0 in terms of their wavevector-frequency characteristics. In addition,

2-16
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wavevector-frequency descriptions of wave fields in one and two spatial

dimensions will be presented and discussed.

2.3.1 Review and Perspective

The justification for the description of wave fields as a function of

wavevector and frequency, rather than space and time, is found in the

multidimensional Fourier transform pair of equations (2-25) and (2-26). By

these transform relationships, it must be concluded that P(k,w) and p(-,t)

constitute equivalenvt descriptions of the wave field, inasmuch as either

description may be derived from the other via the appropriate Fourier

transformations. Therefore, a description of a wave field as a function of

wavevector and frequency is as valid and complete as the description of that

field as a function of space and time.

The reader might ask, with some justification, why the kinematics of the

plane harmonic wave, rather than the simple argument presented above, was the

focus of the initial section of this chapter. The reason for this choice was

that, in my experience, the primary impediment to the understanding of the

wavevector-frequency descriptions of fields is not the concept of the Fourier

transform: it is the concept of the wavevector. The scientist or engineer has

no problem envisioning the pressure field, p( ,t), because space and time are

familiar physical concepts. Envisioning the field P(k,w), on th, other hand,

is likely to prove difficult because the wavevector is an unfamiliar physical

concept. The concept of frequency, however, is well understood by

acousticians. For this reason, the primary emphasis in this chapter was to

define and physically interpret the wavevector.

The definition and interpretation of the wavevector were addressed by

studying the kinematics of a plane harmonic wave, which corresponds to a

wavevector-frequency field, P(k,w), containing a single discrete wavevector-

frequency component. It was shown that the space-time field associated with a

plane harmonic wave is completely determined by the amplitude and phase of the

wave. The amplitude specifies only the magnitude (and, in the case of a

complex wave, the initial phase) of the disturbance associated with the wave.

2-17
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All information regarding the spatial and temporal variation of the wave is

contained in the phase.

As was shown in equation (2-8), the phase is a linear function of the

components of the spatial position vector, 7, and time, t. The constants of

proportionality are the components of the wavevector, k, and the circular

frequency, w. The wavevector components define the rate of spatial repetition

of the wave in each of the corresponding spatial coordinate directions at any

fixed time. The circular frequency defines the rate of temporal repetition of

the wave at any fixed point in space. The direction and speed of propagation

of the plane harmonic wave are determined by appropriate combinations of the

wavevector and circular frequency.

By equation (2-1), it is evident that knowledge of the (complex)

amplitude, the wavevector, and the circular frequency is sufficient to define

the field of the plane harmonic wave over all space and time. Further, it was

shown in section 2.2.3 that expressing a space-time wave field as the multiple

Fourier transform of equation (2-25) is equivalent to representing that field

as a superposition of plane harmonic waves. Therefore, if one knows the

complex amplitude, the wavevector, and the circular frequency of each plane

harmonic wave comprising that superposition, the wave field can be uniquely

defined over all space and time. lhis is precisely the information provided

by the wavevector-frequency description (or transform) of the wave field,

which is denoted by P(k,w) in equations (2-25) and (2-26).

By the arguments presented above, the wavevector-frequency description (or

! •transform) of a wave field specifies the complex amplitudes of all harmonic

plane waves comprising that field as a function of the rates of spatial

repetition (in each coordinate direction) and temporal repetition

corresponding to each harmonic wave component.

2.3.2 Wave Fields in One and Two Spatial Dimensions

'or generality, the wave fields treated thus far in this chapter have been

I •assumed to have three-dimensional spatial variation. In forthcoming chapters,

-' many of the illustrative examples will treat wave fields with spatial

2-13
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variation in only one or two coordinate directions. These one- and two-

dimensional spatial fields are interpreted as special cases of the

three-dimensional field below.

Consider the pressure field, p(7,t), having the wavevector-frequency

transform

P(k,w) = 2rP(k,w)S(k 3) , (2-55)

where k denotes the two-dimensional wavevector (kl,k 2). By equation (2-25),

the space-time field corresponding to equation (2-55) is given by

p( ,t) = p(t) = (2) -3 f P(k,)exp[i(k'x + wt)] dk dco (2-56)

where x denotes the two-dimensional spatial vector (xlx 2). By equation (2-56),

it is evident that p(x,t) is a pressure field that depends only on the two-

dimensional spatial vector, x, and the time, t. Further, by equations (2-55),

(2-56), and (2-26), one can easily demonstrate that

P(k,) f~ p(x,t)exp[-i(k.x i- wt)] dx dt . (2-51)

Thus, P(k,w) is the three-dimensional Fourier transform of p(x,t) and is a

function of the two-dimensional wavevector, k, and the circular frequency, c.

The characteristics of the wave field in two spatial dimensions can be

interpreted as a special case of the three-dimensional spatial field.

Equation (2-55) describes a wavevector-frequency field in which only plane

harmonic waves having a zero spatial repetition rate in the x3 coordinate

direction (i.e., k3  = 0) contribute to the space-time field. The physical

interpretation of a zero spatial repetition rate of a plane harmonic wave in

one coordinate direction is that there is no spatial variation of the wave in

that coordinate direction. This is borne out by equation (2-56), which shows

the resultant space-time field to be independent of the x3  spatial

coordinate.
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As the space-time dependence of a plane harmonic wave is contained in the

phase of the wave, it follows that the phase of each plane harmonic wave

contribution to the wave field must also be independent of x 3. This

conclusion is again supported by the form of the integrand of equation (2-56).

If we consider a single wavevector-frequency component of the integrand, say

k = (kol,k 0 2 ) and woo and denote the initial phase of that component

by O(koo), the phase front associated with the single wavevector

component is given by

ko.x + 0t + o(ko,co) = ( . (2-58)

The phase front defined by equation (2-58) is a straight line in the

(xI x2) plane. This straight line can be interpreted as a special case of

the phase plane defined by equation (2-9). Recall that the wavevector, , is

* perpendicular to the phase plane. The x3 axis, in our Cartesian coordinate

system, is perpendicular to the (xl1,x2) plane. By equations (2-55) and

(2-56), only plane harmonic wave components characterized by wavevectors

k = (k,0) contribute to the space-time pressure field. For such wavevectors,

it is easily shown that if Z3 = (0,0,x 3), then k'.3 = 0. As the

magnitudes of neither Z nor T are, in general, zero, it follows that the

phase planes are perpendicular to the (xl1,x2) plane. Thus, equation (2-58)

may be interpreted as the description of a phase plane oriented perpendicular

to the (xlx 2 ) plane, or as a phase line characterizing the intersection

of that phase plane with the (xl,x 2 ) plane.

From the arguments presented above, it should be obvious that the

two-dimensional wavevector, k, is perpendicular to the phase line. Further,

definitions and interpretations of the two-dimensional wavevector are easily

obtained by specializing the relationships presented in section 2.1.1 to the

case where k3 is zero and x3 is a constant.

The wavevector-frequency characterization of a wave field in one spatial

dimension can also be developed as a special case of the three-dimensional

spatial field. Consider the wave field, p(T,t), resulting from the

wavevector frequency transform

IV2 20
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2-P(kw) = (2n) P(kl,w)6(k2 )6(k3 ) (2-59)

By equations (2-25) and (2-59), we obtain

p(Z,t) = p(x1 ,t) = (21r) - 2 ffP(k, w)exp[i(klxl + wt) dkl dca . (2-60)

Equation (2-60) describes a space-time field, p(x1 ,t), that is a function of

the single spatial variable, x], and time. By Fourier-transforming equation

(2-60) in x1 and t and by utilizing equation (2-38), one can easily show that

P(klW) = [fP(x,t)exp[-i(klxl + Wt)] dx1 dt (2-61)

Equations (2-60) and (2-61) constitute a Fourier transform pair.

As in the case of the wave field in two spatial dimensions, the wave field

in one spatial dimension can be interpreted as a special case of the field in

three spatial dimensions. By equation (2-59), all plane harmonic wave

contributions to the space-time wave field are characterized by wavevectors

having components (kl,0,0). As the wavevector has been shown to be directed

perpendicular to the phase plane of the plane harmonic wave, it follows that

the phase planes of all the harmonic wave contributions to p(',t) in

equation (2-60) are perpendicular to the xI axis. Thus, the phases of the

individual harmonic wave components in the integrand of equation (2-60) can be

interpreted as descriptions of the kinematics of phase planes oriented

perpendicular to the xI axis, or as the kinematics of the phase point

defined by the intersection of the phase plane with the x1 axis.

The definitions and kinematic interpretations of section 2.1.1 can be

applied to the wave field in one spatial dimension by requiring k2 and k3

to be zero. These relations and definitions show that all harmonic components

com;rising the wave field in one spatial dimension are independent of x2 and

X3 ad propagate in the direction parallel to the xI  axis and opposite to

the direction of kI .
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CHAPTER 3

SPACE- AND TIME-INVARIANT LINEAR SYSTEMS

In the first chapter, wavevector-frequency analysis was defined as the

description of space-time fields or systems in terms of their wavevector-

frequency characteristics. The second chapter treated the description and

interpretation of space-time fields in the wavevector-frequency domain. The

characterization and interpretation of the response of systems in the

wavevector-frequency domain will be the topic of the next five chapters.

The systems approach presented in these chapters parallels, in many

aspects, the linear system theory developed by electrical engineers for the

analysis of systems and fields that depend only on time. This approach was

adopted because it provides a fundamental and consistent method of addressing

a wide variety of problems, including those in acoustics.

This chapter reviews the basic concepts of systems theory and demonstrates

the rationale for the wavevector-frequency analysis of one class of space-time

systems: the space- and time-invariant system.

3.1 SYSIEMS AND THEIR CLASSIFICATIONS

The definition of a system that suits the purpose of this text is a

combination of those found in The American Heritage Dictionary of the English
1 2

language and Brogan's Modern Control Theory. With suitable apologies to

both sources, we define a system as an aggregation or assemblage of inter-

acting elements combined by man or nature to form an integral entity.

The key word. in this definition is "elements." If, for example, the

elements a-e taken to be successive differential lengths of a string under

tension, then some finite length of interest of the string can be considered

tu constitute a system. On the other hand, a finite length of string under

tension would be an element of the system called the violin. Clearly, the

3-1
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above definition of a system is sufficiently flexible to accommodate an

infinite variety of components, interactions, and processes.

Systems theory is concerned with the interactions and behavior of the

various elements of the system resulting from certain conditions or

excitations imposed on the system. Therefore, the statement of a systems

problem requires three definitions: (1) the definition of the elements and

interactions comprising the system, (2) the definition of the conditions or

inputs imposed on the system (usually called the input), and (3) the

definition of the specific interaction or behavior of interest in the system,

i.e., the system output. By this systems approach, a wide variety of problems

can be reduced to the conceptually simple form depicted in figure 3-1.
I,

In systems theory, a distinction is made between the physical system and

the mathematical model of that system. The physical system is that

as3semTblage of interacting devices, components, mechanisms. processes, etc.,

that have been selected for scrutiny. However, owing to cost

considerations, the study of the behavior of the physical system under a

given input is often conducted by means of an experimental or mathematical

model of the system. Systems theory is concerned with the study and

solution of these models of systems rather than the physical form of the

sys em. Mathematical systems theory, or the study of mathematical models of

S1 'At?,ns, is the emphasis of these next few chapters.

The mathematical modeling of systems is an acquired skill, and a

detailed discussion of the construction of mathematical models of systems is

beyond the scope of this text. However, the mathematical form of the system

model, including the forms of the input and consequent output, has a

considerable impact on both the relative difficulty of predicting the output

SYSTEM THE SYSTEM
INPUT SYSTEM '' OUTPIT

Fi qure 3 -1 ConceptuaI Fnr,, of a Systems ['roblfm
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of the system for a given input and on the mathematical techniques required

for that prediction. As a result, system models are usually classified

according to the mathematical characteristics of the system model and its

input. Table 3-1 lists the major characteristics used to classify

mathematical models of space-time systems and their inputs.

Table 3-1. Major Classifications of Systems

Mathematical Properties

Linear Nonlinear
Deterministic Stochastic

System Model Time Invariant Time Varying
Continuous Time Discrete Time
Space Invariant Space Varying
Spatially Distributed Spatially Discrete

Input Free Forced
Deterministic Stochastic

In general, all of the factors in table 3-1 must be taken into account in the

classification of the mathematical model of the system and its input.

Ho.,ever, the order of the listing has no significance.

In this table, a linear .)stef is ot ,. ic th. : uations governing all

model elements are linear. If one or more elemental equations are nonlinear,

the system is nonlinear.

Systems models that contain parameters which vary in some random fashion,

and can be described only in terms of their statistical or average properties,

are called stochastic systems. Otherwise, they are considered deterministic.

If the parameters of the mathematical model do not vary with time, the

system is time invariant. If the mathematical model of the system is defined

for all time, it is a continuous-time model. On the other hand, a model that

troats tho ;,/stem only at discrete time intervals is a discrete-time model.

3-3
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A space-invariant system is one in which the parameters of the

mathematical model are independent of the spatial coordinates of the model. A

mathematical model that describes the physical system continuously over space

is a spatially distributed model, whereas one that treats the system only at

discrete points in space is a spatially discrete model. Lumped parameter

systems are a special case of spatially discrete systems.

Continuous space-time systems are modeled by partial differential

equations, whereas discrete systems are modeled by ordinary differential

equations or finite difference equations.

A system is said to be free if there are no external inputs to the

system. In this case, the behavior of the system is completely determined by

the system itself and its initial conditions. A forced system is one subject

* •to external inputs. If either the external input or the initial conditions

. are subject to random variations, the input or initial conditions are

-"'" considered stochastic.

* 3.2 CLASSIFICATION OF ACOUSTIC SYSTEMS

The systems of interest in this book are those associated with linear

acoustics. Further, because (1) the subject of this text is wavevector-

rt(feny ana ' is and (2) the 'avevec tor and f r2qeny re the respective

fourier conjugates of the spatial vector and time v.rlables, our focus is or,

those acoustic systems that are continuous in time and spatially distributed.

Our purpose of teaching the fundamentals of wavevector-frequency analysis

is best served by restricting attention to the deterministic, time-invariant

mathematical models that describe the bulk of acoustic systems. Therefore, we

will nct attempt to address the acoustics of stochastic and time-varying media.

Infinite, spdaially invariant models of systems are often employed in

Vacoustics because they are relatively easy to solve and offer insight

reqarding the relative importance of the various physical processes

influencing the system output. However, in many acoustics problems, the
0
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effects of the spatial limitations and boundary conditions on the system

output are the focus of the modeling effort. Such space-bounded models fall

in the class of space-varying systems. Clearly, both space-varying and

space-invariant acoustic systems must be addressed.

Although stochastic systems will not be treated in this text, considerable

interest and history exists in the response of acoustic systems to stochastic

inputs. Therefore, all forms of inputs will be considered.

In summary, the acoustic systems treated here will be limited to those

that are linear, deterministic, time-invariant and continuous, and spatially

distributed. However, all classifications of inputs will be treated.

This chapter treats the response of space- and time-invariant linear

systems to deterministic inputs and initial conditions. Chapter 4 addresses

the response of space-varying (but time-invariant) systems to deterministic

inputs and initial conditions. Chapter 5 reviews some coupled systems of

interest in structural acoustics. Chapter 6 develops the statistical concepts

and descriptors required for the treatment of the response of systems to

stochastic inputs or initial conditions, and chapter 7 deals with the response

of systems to such random excitation.

3.'3 FR i R PONSE OF SPACE AND TIME-INVARIANI IINEAR SYSILMS

Spatidlly distributed, continuous-time systems in linear acoustics are

modeled by linear partial differential equations in which the independent

variables are spatial coordinates and time. If attention is further

restricted to systems that are invariant in space and time, the coefficients

of the various terms of these linear partial differential equations are

constants.

In free systems, the absence of external inputs is reflected in the

partial differential equations that model the system by the absence of

inhomoqpneous terms. Thus, the mathematical models of free space-time

invariant linear systems are homogeneous partial differential equations with

constant coefticients.
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The output of a free system exists for all time and is sustained by

natural interactions within the system. In the absence of external irputs,

the initiation of the free response cannot be addressed. However, by specific

knowledge of the output at any given time, the output can be determined for

all time.

The outputs of free systems with losses cannot be described in the

wavevector-frequency domain. The amplitudes of such outputs decrease

monotonically with increasing time, and Fourier transforms of such outputs,

over all time, do not exist.

.The outputs of lossless, free space-time-invariant linear systems,

however, can be described equivalently in the space-time domain or the

-, wavevector-frequency domain. This equivalence of description and the

teLhniques for solution in the wavevector-frequency domain can be demonstrated

by some illustrative examples.

3.3.1 The Infinite String

A classical prcblem in linear acoustics is the free vibration of a

uniform, infinitLy long string, resulting from some specified initial

displacement and velocity distribution. Here, the system is the string, free

from exterral input, and the desired information (i.e., the output) is the

space-time displacement field, w(x,t), of the string. The mass per unit

length (c) and the tension (T) of the string are constant over the length of

the string. The mathematical model describing the displacement of the string
3' is given by the following linear partial differential equation with

- constant coefficients:

2 2
a w 1 a w 31"-- - = 0 (3-1)

ax2  c at2
• s

2for all x and t, where c T/c.
s

* [f w is written a, the ,javenumber frequency transform

". 3 6
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w(x,t) = (2n) - 2 JW(kw)exp{i(kx + wt)} dk dw , (3-2)

then it follows from equation (3-1) that W(k,w) must satisfy

[(/CS) 2  k 2]W(k,w) = 0 (3-3)

for all k and w. Equation (3-3) states that W(k,w) can have a nonzero

solution only along the two lines defined by Ikl = I /csl, which are

depicted in figure 3-2. Because of this restriction on the wavenumber content

k

Figure 3 2. Locus of Wavevectors Characterizing Free Waves
of an Infinite String as a Function of Frequency

3-7
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of W(k,w) at any frequency, the wavenumber

ks = lW/c s I (3-4)

is called the free wavenumber of the string.

It is apparent, by equations (3-2) and (3-3), that if a particular

wavenumber component, say k', is present in W(k,w), its contributions to

w(x,t) can only be complex harmonic waves of the forms exp{ik'(x + c t)} and
'- S

exp{ik'(x - c st)). The amplitudes of these harmonic wave components depend,

of course, on the exact form of W(k,w).

',#

The mathematical form of W(k,w) can be deduced by first writing w(x,t) in

the form

00

p ."w(x't) = (2-f) -I  f W(k,t)exp(ikx) dk (3-5)

-4"

Substitution of equation (3-5) into equation (3-1) yields the ordinary

differential equation

W d 2 .kt) ( 2
dt2  y (kCs) W(k,t) r 0 , (3 6)

which has the solution

W(k,t) = A(k)exp(ikc t) +- B(k)exp(-ikc t) (3-7)

; By performing the temporal Fourier transformation of equation (3-7), we obtain

0 W(k,w) = 2n{A(k)6( , - kc ) - B(k)6(w + kc )} (3-8)

Note that this solution to equation (3-3) is consistent, in form, with the

"-'- solution to equation (2-50) given by equation (2-52). In equation (2-50),

S 0was tacitly assumed to be a constant and, consequently, A and B in

equation (2-52) were constants. In equation (3-3), however, k is a variable.

3 8
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Therefore, the quantities A and B modifying the delta functions in

equation (3-8) must be functions of k.

Equation (3-8) is the form of the general solution for the vibration

displacement of the free, infinite, uniform string in the wavenumber-frequency

domain. Note that W(k,w), the wavenumber-frequency transform of w(x,t), is

characterized in the k-w plane by a weighted distribution of delta functions

- along the lines IkI = k . The particular weighting functions, A(k) and

B(k), are determined by the initial distribution of displacement and velocity

i*- on the string. Before proceeding to the determination of A(k) and B(k) in

terms of these initial conditions, it should be noted that, by substituting

. equation (3-8) into equation (3-2) and performing the required integrations,

. one obtains

w(x,t) = a(x + c t) - b(x - cst) , (3-9)
Ls

where a(x) and b(x) denote the respective inverse Fourier transforms of A(k)

• .and 8(k). Equation (3-9) is the general form of the classical solution for

the free vibration of the infinite, uniform string. 4

Assume that the initial displacement and velocity of the string are given

bb

w(x,0) W w0 (X) (3-10)

and

aw _xIQj _ (X) (3-11),+ at 0 o

' By equation (3-2), equation (3-9), and the use of the inverse Fourier

* transform, it is easily shown that

A(k) (1/2){W 0 (k) - [I/(ikc s)]Vo (k)} (3-12)

,B(k) (l/2){Wo. 0(k) [1/(ikc s)]Vo (k)}  (3-13)

3-9
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where Wo(k) and Vo(k) are the spatial Fourier transforms of w0 (x) and

v (x), respectively. Thus, by equations (3-8), (3-12), and (3-13), we obtain

W(k,w) = iWo0 (k)[(S - kc s ) + A( +- kc s)]

+ [I/(ikc s)]Vo(k)[6(w - kcs) - S(w + kcs)]} . (3-14)

Equation (3-14) is the wavenumber-frequency description of the

displacement field resulting from the free vibration of an infinite, uniform

string with arbitrary initial displacement and velocity conditions. Recall,

from section 2.2.1, that this wavenumber-frequency transform defines the

amplitudes and initial phases of the harmonic waves comprising the space-time

field as a function of the wavenumber and frequency characterizing each wave.

As noted previously, the wavenumber-frequency contributions to the

displacement field consist of a weighted distribution of delta functions along

the lines 1ki = k . The weighting of the delta functions is completely

determined by those wavenumber components comprising the initial displacement

and velocity fields of the string.

In free vibration, only waves that result from natural interactions

betw.een elements of the string can be propagated. lhe delta functions of the

form (w 4 kc s ) in each term of equation (3-14) are the mathematical

statements of this restriction. These terms state that only waves

characterized by wavenumbers and frequencies in the ratio I"/kl = c (i.e.,

those with propagation speed c ) can be propagated in the string. This

* restriction, implied by equation (3-3), is illustrated in figure 3-2.

As is evident by both equation (3-14) and figure 3-2, only two

frequencies, equal in magnitude and opposite in sign, are associated with each

wavenumber component of W(k,w). By equation (2-14), this implies that each

wavenumber component associated with the initial displacement and velocity

fields contributes two harmonic waves to the vibration displacement field of

the string: one propagating in the positive x direction and one propagating

in the negative x direction. The speeds of propagation of both waves are

easily shown (by equations (2-14) and (3-4)) to be independent of both

3-10
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wavenumber and frequency and to be equal to c s . The amplitudes and initial

phases of these two waves are determined by their respective complex

amplitudes, W0(k) - V0(k)/(ikc s ) and W0(k) + V0 (k)/(ikcs). The space-

time displacement field of the vibrating string is the superposition of all

such wave pairs dictated by the wavenumber content of the initial

displacement and velocity fields.

The space-time field is obtained by substituting equation (3-14) into

equation (3-2) and performing the integration on w. This yields

w(x,t) = (4w) -1 {[W 0 (k) + V0(k)/(ikcs )]exp[ik(x + c St)]

+ [W0 (k) - V0 (k)/(ikc s)]exp[ik(x - c st)]} dk

(3-15)

It is easiiy demonstrated that

U

exp(iku) exp(iky) dy + (3-1b)epiku 1k

0

Bi substitution of the appropriate form of this result in equation (3-15), the

integrals over k are immediately recognized as simple inverse Fourier trans-

forms of W0 (k) and V0 (k). It may thereby be shown that equation (3-15)

reduces to the form IWO((Cst){wo(X

w(xt) = (112) x - + w0(x + c t)

x-c t x-c t
s s

I V (y) dy + L v Vo(y) dy (3-17)

0 0

Equation (3 1/) is the ,olution to the vibration of the infinite, uniform
4

string obtained by traditional methods and presented in Morse. 1hat this

3-11
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space-time solution was obtained by appropriate integration of the wavenumber-

frequency description of the vibration field reinforces the assertion that

both the space-time and wavenumber-frequency descriptions of a field contain

equivalent information.

As a fina~l oh-ervation, it should be noted that the solution lur the free

vibration of the string given by equation (3-17) is valid for all time. The

explicit absence of external forces in the free system model precludes any

consideration of how the vibratory motion was initiated. The initial

conditions are therefore only simultaneous "snapshots" in time of the

displacement and velocity fields. However, in the absence of external inputs,

these initial conditions provide sufficient information to determine the

vibration field prior to, as well as after, the time of the snapshot.

* 3.3.2 The Infinite Flat Plate

-he technique for obtaining the wavenumber-frequency or space-time

solution for the free response of space- and time-invariant systems is

independent of the number of independent spatial variables required to

mathematically model the system. To demonstrate this assertion and to

introduce the concept of dispersive waves, we next treat the free transverse

vibrations of an infinite, uniform, thin, flat plate.

!he space-time field of the displacement of the central plane of the

plate, measured normal to that plane, is designated by w(x,t), where
5

x [Xlx 2]. The free vibration of the thin plate is governed by

0
4 a 2DV 4" a w

-- 0 (3-18)..- at 2

where
02

4 2 a2

-V (3-19)

2 2

and where, tor this spatially invariant system, the flexural rigidity (D) and

.- d the mass per unit area (v) of the plate are constants.

".3-"2
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If one assumes that the displacement field can be written in the form

w(x,t) = (2) - 3 {fW(k,.)exp{i(k.x + wt)} dk dw , (3-20)

substitution of equation (3-20) into equation (3-18) yields (as the resulting

integral must hold for all x and t)

(k- )W(k,w) = 0 , (3-21)D

4 2 2 2
where k = (k 1  k2 )

Equation (3-21) states that W(k,) must be zero except at those

wavevectors having magnitudes equal to the fourth root of p21D Therefore,

*T as we found in the case of the free vibration of the infinite string, only

-* those waves that result from natural interactions between the elements of the

infin ite plate can contribute to its free vibration. By equation (3-21), only

waves associated with wavevectors of specific magnitudes can contribute to the

motion of the plate at each frequency. This wavevector magnitude, called the

free wavenumber of the plate, is designated by k and given by
p

k 4 -21D (3-22). kp =

From equation (3-22) and the above discussion, it is apparent that the

*. locus of all wavevectors contributing to the vibration of the plate at any
given frequency must fall on a circle of radius k in the k plane and that

the radius of that circle increases according to the square root of the

magnitude of the frequency. However, according to equation (2-14), this

*implies that the phase speed (i.e., the magnitude of the phase velocity) of

the waves comprising the free motion of the plate is a function of frequency

* and is given by

i 4 (3-23)

3-13
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The quantity cp, which is referred Lo as the free wave speed of the plate,
p

is seen to increase with the square root of the m3gnitude of the frequency.

This is in contrast to the free waves in the infinite string, which had a

constant phase speed. Waves characterized by a phase speed that varies with

frequency are called dispersive waves.

By equations (3-4) and (3-22), it is evident that the dispersive nature of

a wave is reflected in the frequency dependence of the free wavenumber. That

is, for the nondispersive waves in the uniform string, the free wavenumber is

linearly related to the frequency, as indicated by equation (3-4). For the

dispersive waves of the flat plate, the free wavenumber varies nonlinearly

with frequency, as evidenced by equation (3-22).

The difference in the wavenumber-frequency characteristics of free waves

* in dispersive and nondispersive systems is illustrated in figure 3-3. Here,

the free wavenumbers of the string (k ) and the flat plate (k ) are shown
5 p

.'N as a function of frequency. The nonlinear behavior of the (dispersive) free
wavenumber of the plate with frequency is easily seen in contrast with the

linear behavior associated with the (nondispersive) free wavenumber of the
! string.

Returning nov' to equation (3-21), the mathematical form of W(k,w) can be

d-tr-Mred by an extension of equations (2-50) and (2-51) or by assuming a

form for w(xt) similar to that assumed for the displacement field of the

string in equation (3-5). That is, in the latter approach, we assume

w(xt) = (2)2 W(kt)exp{ik.x} dk (3-24)

Substitution of equation (3-24) into equation (3-18) yields the ordinary

differential equation

2- 4
d W(k,t) Dk4

W (k,t) , (3-25)• dt2

dt

3 .-.-4
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Figure 3-3. Luvparion of the Free Wavenumbers of an
Infinite Flat Plate and an infirnte String

which has the general solution

W(k,t) - A(k)exp{i fDl7 k2t} + B(k)exp{-i -D- k2t } , (3-26)

wherp A and B are arbitrary functions of k and k = k l + k 2. By taking the
temporal Fourier transform of equation (3-26), we obtain

W(k,W) = 2n[A(k)S{w - fV07 k2} + B(k)6f( + D/, k2 }] (3-27)

and by equation (3-20),

w(X't) = (2f) -2J[A(K)expfi[K- /7j k ]

s B(k)exp{i[k.x - V ' 1'-k
2 t]}] dk (3-28)

As was the case in the vibrating string, the functions A(k) and B(k) are
determined by the initial conditions of the plate. If the initial

3-15
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displacement and velocity fields of the plate are given by

w(2,O) = w0 (2) (3-29)

and

Sandw(x,O)

dt =Vo(X) , (3-30)

then, by equation (3-28) and the definition of the Fourier transform, it is

easily shown that

#.,W(k,W) =T W(kl{S[. D/v -k ]+ S[W + D /v k']}

-- 0o 2 2

+ {V0 -2  - D/v S -- k2 -S[w +D--k 21} , (3-31)
_ °_ i\ D/, k

wrere W.(k) and Vo(K) are the respective spatial Fourier transforms of

i o(2X) and vo(X). EqJation (3-31) is the wavevector-frequency description
of the displacement field resulting from the free vibration of the infinite

plate.

Ihe physical interpretation of equation (3-31) parallels that of the

somewhat similar mathematical form obtained, in equation (3-14), for the

wavenumber-frequency description of the free vibration of the infinite

string. That is, we first recall, from chapter 2, that W(k,w) defines the

amplitudes and initial phases of all the harmonic waves comprising the

vibration field as a function of the wavevectors and frequencies

characterizing each wave.

By equation (3-31), it is apparent that the wavevector content of the

displacement field is completely determined by those wavevectors comprising

the initial displacement and velocity fields: that is, those defined by

W (K) and Vo(k). Further, only two frequencies, equal in magnitude and

opposite in sign, are associated with each wavevector component of the initial

displacement or velocity fields. Thp magnitudes of these frequencies are

proportional to the squared magnitude of the wavevector. Thus, by equations

3 16
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(2-14) and (3-20), each wavevector component of the initial displacement or

velocity contributes two harmonic waves to the space-time displacement field

of the plate; one wave propagates in the direction of the wavevector

associated with that component and the other propagates opposite to that

direction. The speeds of propagation of both components are equal and, by

equations (3-22) and (3-23), proportional to the magnitude of the wavevector

characterizing the component. The amplitudes and initial phases of these two

waves are specified, respectively, by Wo(k) ± iVo(k)/[i[/, k2 ]. The

space-time displacement field associated with the free vibration of the

infinite plate is the superposition of all such wave pairs dictated by the

wavevector content of the initial displacement and velocity fields.

As an illustrative example, consider the free vibration of the infinite

thin plate resulting from the initial conditions

w 0W(x) a sin(k 10x1 )

and (3-32)

vo( ) = 0

. ere a is the (real) amplitude -f the initial displacement and k is a

.onstant .wavenumber in the kI  direction. It follows, by taking the spatial

KtriF- transtorms of '0 (X) and v0(x), that

W o(k) (212  /i)6(k 2 )(6(kI - klo) - 6(k 1  kl ))

and (3-33)

V0 (k) = 0

Therefore, only two wavevector components, with amplitudes equal in magnitude

and opposite in phase, are present in the initial displacement and velocity.

By substituting equation (3-33) into equation (3-31), we obtain

. w (?r 3 / k 2 ){ (k I  k 1 0) 6(k I  k 10))

- 2  2

D/, ko 0 6[' + VD/ ko10 ] (3-34)

3-17
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By equation (3-34) and the previous discussion, we see that the free vibration

field of the plate is comprised of the sum of four complex harmonic waves.

The magnitudes of the (complex) amplitudes of all waves are equal, as are the

magnitudes of the wavevectors and frequencies characterizing these waves. By

use of equation (2-14), it can be shown that two of these waves propagate in

S. the positive x1 coordinate direction and the other two propagate in the

negative xI direction. The speeds of propagation of all waves are equal and

can be shown to be 'D/, Iko101. Finally, it is easily demonstrated that the

wavevector-frequency description of this field has conjugate symmetry in the

k - domain; that is, W(-k,-w) = W*(k,w). Therefore, by the arguments of

section 2.2.1, the space-time displacement field associated with this example

* of the free vibration of an infinite plate is real.

The space-time displacement field for this example is easily shown to be

~- 2 - 2(c/2){sin[k1 0x1  DI k10  t] + sin[k 1 0x1  .\/D/li k1 0  ti)

(3-35)

Equation (3-35) shows that the space-time displacement field is the result of

the spatial waveform of the initial displacement field being propagated, at

4' half the initial amplitude, in both the positive and negative x coordinate
. rert ,ns. The speed of propagation in both directions is equal and is that

identit led above.

3.3.3 Summar of Free Response Characteristics

0 The free response of the systems described in the above examples exhibits

certain wavevector-frequency characteristics that are common to all free

space- and time-invariant linear acoustic systems. In this section, we

briefly summarize those characteristics.

lhe 4avevector-frequency response of free space- and time-invariant

systems defines the specific combination of free waves that comprise the

.,ae-time tmeld associated with the system output. Free waves are that
e t '-J -et of ;'aves which propagate in a system as a result of only the

• .%H

"6 . . ' - , . . ' - . ' . - - ' ' . . . .. , - . , - . - . ° , . . - . . , • - . . . - . , . . . - . - . - . ° - . . . ' - . .
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natural reactions within the system. Inasmuch as (1) each wavevector-

frequency combination defines a specific wave and (2) free waves are a

restricted set, it follows that the set of wavevectors and frequencies that

can contribute to the free response of a system is a restricted set.

Space- and time-invariant systems are infinite in spatial extent and have

uniform properties in both space and time. It is therefore illogical, in the

absence of external constraints or conditions, that there should be any

preferred direction of propagation of free waves in the system. Recall, by

the arguments of chapter 2, that the direction of propagation is determined by

the direction of the wavevector and the sign of the frequency. It therefore

follows that the wavevectors and frequencies that characterize free waves can

only be restrictoA in their magnitudes.

A mathematical definition of the wavevectors and frequencies that

characterize the free waves of a system can always be obtained by a

multple Fourier transformation, ir, all independent variables, of the

partial differential equations governing the response, or output, of the

system. The resulting equation relates the magnitudes of the wavevectors and

frequencies that constitute free waves. The free wavenumber is defined as the

magnitude of those wavevectors that constitute free waves at any particular

trequency.

In the absence of external forces or inputs, the only wavevectors that

can contribute to the output of the system are those present in the initial

conditions. The initial conditions define the complex amplitude of each

wavevector component that contributes to the free response of the system

at some specified initial time. By knowledge of the wavevector components

present in the initial conditions and the combinations of frequencies and

wavevectors comprising free waves (by the definition of the free wavenumber),

the wavevector-frequency content of the system output can be determined.

The illustrative examples presented above demonstrate a consistent

mathematical procedure for obtaining the wavevector-frequency description of

the free responsp of the p;ae- and time nvariant systems encounterod in

1inear acoust ics

3-19
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3.4 FORCED RESPONSE OF SPACE- AND TIME-INVARIANT LINEAR SYSTEMS

The mathematical models of forced space- and time-invariant linear systems

differ from those of their free counterparts only by the addition of the

forcing term, or input, that is not a function of the independent, or output,

variable. Thus, by the arguments of section 3.3, the mathematical models of

these forced systems are inhomogeneous linear partial differential equations

with constant coefficients.

This section describes a fundamental and consistent technique for

0 obtaining and interpreting the wavevector-frequency response of forced space-

and time-invariant linear acoustic systems.

3.,,.l The Principle of Superposition in Linear Systems

(,ie lun for the forced response of linear systems is based on the

ip> t f uperpositi(n for linear equations. ILet L_ denote any linear× ,t

partial differential operator of the form

~(3 '36)

"""°"..,.z here x ( x,x3x) and the indices j, 1, m, and n denote t~e order of

n-0 2'aj) 3x

:2 3
the partial derivatives in x x x ,and t, respectively. Mathematical

- 1' 2' 3
descriptions of linear systems in acoustics are characterized by operators of

the form of equation (3-36).

It p(x,t) denotes the output of a linear system resulting from the input

f(x,t), the inhomogeneous linear partial differential equation that describes

this input output relationship is given by

t-. t ,t)} = f( ,t) (3-37)

p .- , ,t ..... .p p ( , t) ,Are the solut ins o t equat i(n (3-31)

N%0"

[ -'. ,'-" • ",'-.-.-,'-"."......".."....-.'....."..."."...".".".....".-..."....".,..-".'".,....".,......"......-..-, ..'--','-'."'..,,.-*',', ," . " ... *
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resulting from the separate inputs fl(,,t), f (-X,t). f ( ,t), then
12 N

it follows that

N N

bnL-t{Pn(Xt)} = bnfn( ',t) , (3-38)

n=1 n=l

p. where the constants b are arbitrary. However, owing to the form of L-,

n x , t
shown in equation (3-.16), it is easily seen that equation (3-38) can be

rewritten in the equivalent form

[N N

Lbktt) = 'bf(;,t) (3-39)
"/n=l n=l

By equations (3-37) and (3-39), it is clear that if the input to a system is a

linear combination of the form

N

f(,t) = bnfn(*,t) , (3-40)

n=l

then the output is given by

N

p(X,t) = bnPn ( ,t) (3-41)

n=1

Equations (3-40) and (3-41) are a mathematical statement of the principle of

superposition for linear systems, which forms the foundation for the treatment

of forced linear systems.

For the space- and time-invariant systems of interest in this chapter, the

partial differential equations governing the system have constant

coefficients. lhus, for space- and time-invariant systems, the coefficients

a. m in the linear operator of- equat:on (3-36) are constants. However,
Fmn

wr.hen a jre _onstants, it i i' Iy seen that the form of the linear
jlmn

3-21
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operator of equation (3-36) is independent of the origins of the spatial and

temporal coordinates. That is, if we define

x x 0

and (3-42)

T= t - to

~0where x0and t O0 are arbitrary constants, and if we denote the space- and

time-invariant linear operator by Le t' it is easily shown that
1 x~t

,T IL_,t (3-43)

It follows, by equations (3-37) and (3-43), that

LT {p( , = to) f( 0- t , (3-44)1i I ,T 0' )} f= '0, '0

from which it must be concluded that the output of a linear space- and

time-invariant system resulting from the input f( t x0, + t ) is
4(- ,O' i0- to).

By using these fundamental concepts of linear systems, a logical and

conszstent approach to obtaining solutions for the forced response of space

and time-invariant linear systems can be developed.

3.4.2 The Green's Function or Space-Time Impulse Response

0
The Green's function (also descriptively known as the space-time impulse

response) of a system is defined as the response of that system at the spatial

coordinate x and time t to an impulsive input applied at the spatial location

*0 at time t0 . If we denote the Green's function by g(x,t;x 0 ,t0 ) and

assume that the system is governed by a linear inhomogeneous partial

differential equation of the form of equation (3-37), it follows that the

Green's function is mathematically defined by

.-, ,t ,to) } -6 7 )6(t t -45)

3 22
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where

S(6 - x0) =(x I - x01 )6(x2 - x02) 6(x3 - x03 ) (3-46)

The argument of the Green's function in equation (3-45) is written in the

traditional form and deserves some explanation. The independent variables of

the Green's function, _ and t, define the absolute spatial coordinates and

time of observation of the output of the system. The parameters 0 and t0

N' define the spatial coordinates and time of application of the impulsive
input. Clearly, the mathematical form of the Green's function depends on both

the observation variables and the input parameters. The inclusion of the

input parameters in the argument of the Green's function serves as a reminder

of this functional dependence.

In this chapter, our focus is only on space- and time-invariant linear

-* systems. Therefore, by noting the form of the particular f in equation (3-45),

we can employ equation (3-44) to obtain

p.. L-~~)~ {g 0 t (3-47)

By equation (3-47), it is clear that, for space- and time-invariant linear

systems, the Green's function has the mathematical form

* g(x,t;Zo,t ) = g(x - X0, t- () 3-48)

and thereby depends only on the difference between the variables of

observation and the parameters of excitation.

By use of the sampling property of the Dirac delta function (see
." equation (2-31)), we may express any system input f( ,t), as

f(,t) = f(o to)6( - 0 )6(t - t0) dc0 dto (3-49)

-ff

* wherP dx0 denotes dx dx 2dx 03' It is easily shown, from equations (3-39),

(3-47), and (3-49), that the response of a space- and time invariant linear

* 3-23
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system to an arbitrary input, f(3,t), is governed by

,LVt f(JXoito )g( - o,t t0 ) dt0 dtj

= f(70 to)S(7 - 0 )6(t - t0 ) dP0 dt0 = f( ,t) (3-50)

-00

It therefore follows, by the definition of equation (3-39), that the output,

p( ,t), of a space- and time-invariant linear system to any input, f(7,t), is

given by

p(x,t) = f(o g - t - to) 1' 0 dt 0  (3-51)

By employing the change of variables of equation (3-42), we may write

equation (3-51) in the equivalent form

p( ,t) = f( - -,t - f)g( ,T) d dT (3-52)

Equations (3-51) and (3-52) show that, by knowledge of the Green's function of

a space- and time-invariant linear system, the output of the system resulting

from any input can, in principle, be obtained. The caveat "in principle" is

* stated because, in some cases, the integrals cannot be evaluated in closed

form. However, these integral forms pose no problem for characterization of

% the output in the wavevector-frequency domain.

* Up to this point, we have not addressed the question of the initial

conditions used to uniquely define the Green's function. The linear acoustic

systems treated in this book are causal systems. A causal system is one that

is at rest until acted upon by an external input. Thus, the output of a

* causal system depends only on inputs that existed in past times; the system

3 24
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does not respond in anticipation of future inputs. Therefore, for a causal

system, it follows that

g(Z,t;Xo~to) 0 0 , t < to

and (3-53)

anag(x,t;xo,t O)_atn= 0 , t < to for all nat n 0

Equation (3-53) defines the initial conditions for the causal Green's function.

For causal space- and time-invariant linear systems, it follows from

equation (3-53) that

g(x - _x, t - to) = 0 , t < to I

or (3-54)

g( ,T) = 0 , T < 0

Therefore, for causal systems, the infinite upper limit of the temporal

integral in equation (3-51) can be replaced by t, and the negative infinite

lower limit on the temporal integral in equation (3-52) can be replaced by

zero. Many texts and papers use these alternative limits in expressing system

outputs in terms of Green's functions. However, in this text, we will

continue to use infinite temporal limits and rely on those temporal properties

of the causal Green's functions indicated by equation (3-54) to effectively

limit the range of temporal integration.

It should be emphasized that, for the causal systems treated in this text,

equations (3-51) and (3-52) describe the output of a system that is at rest

(i.e., has zero output) until an external input is applied.

3.4.3 The Wavevector-FreoLuencs Rspose

* The wavevector frequency transform of the output of the space- and

time-invariant linear system can be related to the wavevector-frequency

3-25
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transform of the input field by use of equation (3-52). That is, by writing

p(x,t) = (21) -4 JP( kw)exp{i( k.-x + t)} d-k d (3-55)

and

f(',t) = (2f) - 4 {{F(w)exp{i(k., + wt)j dk dw , (3-56)

we can rewrite equation (3-52) as

(21) -4  k - F(',)G( ',k)}expFi(kG' . + wt)} d- d = 0 , (3-57)

G(k,w) = f(.~x{ik~ + WTi)j df dT (3-58)

inamlich 3s equation (3-5/) is valid for all space and time, it follows that

This simple linear algebraic relation between the wavevector-frequency

transforms of the input and output is in sharp contrast to the

four-dimensional convolution required (in equation (3-52)) to specify the

space-time output. Indeed, it is interesting to note, by inverse Fourier

transformation of equation (3-59) and use of equation (3-52), that

'. '°"

r , ,) F(je - ,- )G(wt) ddt(3-50)
hlcte

0 ,( 
0

"-trnsomsofte npt n otptisinshr cntat o h

, . , ourdimnsinalconoluionreqire (i eqatin (-52) t spcif th

....spae-tme otpu. Idee, itis nteestig t noe, y iners Forie
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5.,,

This result is the four-dimensional extension of the convolution theorem

expressed by equation (2-54).

The wavevector-frequency transform of the Green's function, G(k,w), can be

shown to have a simple physical interpretation. Consider the response of a

space- and time-invariant linear system to the input

f( ,t) = exp{i(k0o.x + .0t)} (3-61)

over all 7 and t, where k and 0 are constants. Substitution of

equation (3-61) into equation (3-52) yields, by use of equation (3-58),

=p(,t) G(k0,W0)exp{i(k 0 .,x + 0 t)} (3-62)

* By equations (3-61) and (3-62), G(k,w) is the ratio of the space-time output

field of the system to the input field when the input is a complex harmonic

plane wave of the form exp{i(k.x" + wt)). For that reason, G(k,w) is called

the wavevector-frequency response of the system.

Some texts on acoustics '7 ,8 employ the concept of mechanical and

acoustic impedance. These impedances, based on a force-voltage analogy

uetween acoustic and electrical systems, relate the force or pressure (as

Sppropriate) input to a system to the consequent velocity output of the

system under conditions of harmonic excitation. Many of the papers and

reports dealing with the application of wavevector-freQuency analysis use an

impedance to relate the wavevector-frequency transform of the force or

* pressure tu that of the velocity. Consider, for example, a space- and

time-invariant linear system in which the input is a pressure field, p(x,t),

and the output is the velocity field, v(x,t). The acoustic impedance is

defined as

Z (Ki) P(k,w)/V(k,w) (3-63)

where P(k,w) and V(kw) are the respective wavevector-frequency transforms of

Go" p(7,t) and v(x,t). Similarly, if the system input is a force field, say

f(Z,t), and the output is a velocity field, the mechanical impedance is

3-27
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defined by

Z (kw) = F(k', )/V(k,w) , (3-64)

where F(k,w) is the wavevector transform of f(x,t).

By comparing the forms of equations (3-63) and (3-64) to that of equation

(3-59), it is obvious that the acoustic and mechanical impedances are simply

the reciprocals of the wavevector-frequency response in these specialized

applications. It follows then, by arguments similar to those employed in

equations (3-61) and (3-62), that the acoustic and mechanical impedances are

simply the ratio of the space-time pressure or force field, as appropriate, to

the resultant velocity field when the pressure or force field is a single

complex harmonic plane wave of the form exp{i( . + wt)} for all 7 and t.

By the above arguments, the wavevector-frequency description (i.e.,

" transform) of the output of a space- and time-invariant linear system is

easily achieved, given the wavevector-frequency response of the system and the

wavevector-frequency description of the forcing field. Alternatively, if one

knows (by observation or measurement) the wavevector-frequency transform of

the output anu Sue wavevector-frequency response of the system, the

wavevector-frequency characteristics of the input field can be deduced.

Finally, by knowledge of the wavevector-frequency transforms of the input and

output fields, the wavevector-frequency response of the system can be deduced.

To illustrate (1) the mathematical techniques for obtaining the

* wavevector-frequency response and (2) the interpretative advantages of the

wavevector-frequency description of systems, we present the following

illustrative examples of the forced response of space- and time-invariant

d ' linear systems.

3.4.4 The Forced Vibration of a Uniform Infinite String

Consider the displacement, w(x,t), of a uniform, infinitely long string

resulting from a force per unit length, f(x,t), applied to the string. The

-, mathpmatical model of this system is given by

3 28
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-4--
"Ta 2W  a2w

T -- a W -f(x,t) , (3-65)
ax2 

at2

where it will be recalled that T and c are the respective (constant) tension

and mass per unit length of the string. In equation (3-65), f(x,t) is

considered positive when applied in the direction of positive w(x,t).

The Green's function for the uniform, infinite string is the solution

to equation (3-65) when f(x,t) is replaced by 6(x - x0 )6(t - t0). As

equation (3-65) applies over all space and time, we define = x - x0 and

= t - t0 and then write the equation for the Green's function, g( ,) as

2 2a -q - - - a -

a 2 2 2 2 (3-66),'-a 2  c at2  c

,here it will be recalled that cs = T/F.

There are a variety of methods for obtaining the solution to equation (3-6b).

However, because our immediate goal is the determination of the wavenumber-

frequency transform, G(k,w), of the causal Green's function, we will use Fourier

transform techniques to solve this equation.

- To obtain the particular solution, denoted by g , to equation (3-66),
p

- we write

(2 "" ff~p
, Gp(fTp (k,w)exp{i(k + - )} dk dw (3-67)

Then, by using equations (2-38) and (3-67), equation (3-66) can be written in

the form

.-.

(2Tr)- I{[ (kc )2 ]Gp(kw) l/E}exp{i(k% W T)) dk dw = 0

(3-68)

3-29
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As equation (3-68) holds for all and T, it follows that the wavenumber-

frequency transform of the particular solution is

G (k ,) (3-69)
p ' [ 2 ((kc3)-2

The wavenumber-frequency transform of the homogeneous solution to

equation (3-66), denoted by Gh(k,w), is precisely that developed for the

free vibration of the string and given by equation (3-8). That is,

G h(k,w) = 2r{A(k)S(w - kc ) + g(k)6(w + kcs)} . (3-70)

The wavenumber-frequency transform of the Green's function for the infinite

string is the sum of the particular and homogeneous solutions, where the

.. functions A(k) and B(k) are determined by the initial conditions.

- ihe initial condition for the desired causal Green's function is

= n for < 0 for all I. If we definp

G(k,t) = g( ,t)exp{-ik } d , (3-71)

- it follows that the initial condition translates to G(k,-) 0 for - < 0

- for all k. From equations (3-69) and (3-70), G(k,T) can be obtained by the

-. inverse Fourier transformation

' -2 G(k,,T (2T) -  {Gp(k,w) G G (k,w)}expfiw- }  dwo (3-72)
"4. L4 o

,. ,. Let us consider the inverse transforms of G and G h  separately.

p h

By a partial fraction expansion of equation (3-69) and use of equation

(3-12), the particular portion G (kT) of G(kT) may be written
p
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G!k P )= 4k - s  kcs exp{iWt} dw (3-73)
p 41rckc5 j 1w i-kc s5  cs

-00

However,

and Papoulis 9 shows that

1r (2 -)-I  _ L IWTJ dw = sgn(T) (3-75)

- -00

* The generalized function sgn(T) in equation (3-75) is defined by

>r 0
sgn(t) = = 2U(<) - 1 , (3-76)1-1".1 - , < 01

.where U(T) is the Heaviside function defined in equation (2-32).

% By equations (3-73), (3-74), and (3-75), it is straightforward to show that

1 sin(kc s )
G p(k,-t) = 2c sgn( ) kc (3-77)

Further, by equations (3-70) and (3-72), it can be shown that

Gh(k, t) = A(k)exp{ikcsT} * B(k)exp{-ikcst}. (3-78)

* Inasmuch as G(k,T) = G (k,T) + Gh(kT) and causality requires that

G(k,T) = 0 for T < 0 for all k, it follows, by equations (3-77) and

(3-/8), that

A(k) -B(k) = 1/(4,I kcs) , (3-79)

-S.3-31
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and thus, by use of equations (3-76), (3-77), (3-78), and (3-79),

sin(kcs )
G(k,t) = (I/c)U(t) kc (3-80)

5

Equation (3-80) is the wavenumber transform of the causal Green's function for

the infinite, uniform string.

Our interest is in the wavenumber-frequency rather than in the space-time

description of the Green's function. However, for the sake of completeness,

we note that the space-time description of the causal Green's function can be

obtained by the inverse Fourier transformation of equation (3-80). By writing

sin(kc T) in equation (3-80) in its exponential form and by using equations
S

(3-75) and (3-76), one can show that

.(](,t) - [ /(4cs )]U(T){sgn( - c s ) s sgn( C )} [ /(2cc s) U(CsI

(3-81)

Figure 3-4 depicts the Green's function for the infinite string as a function

of % at a constant, but arbitrary, value of T. The Green's function is

usually interpreted as the output of the system resulting from an impulsive

, lhV is no' strictlj true inasmuch as equation (3-52) shows that the

of the Green's function are not those of the output, or even the

output divided by the input. However, if I is defined as a constant of

* mdjpiLude one arnd dimensions of force-time, it can be argued (by equations

(3-52) and (3-66)) that Ig( ,T) is the displacement of the string resulting

* from the impulsive force per unit length 16(x - x 0 (t - t0 ). Thus, it

follows that g(%,x) is proportional to the displacement resulting from the

,. impulsive excitation.

* Note, by figure 3-4, that at T seconds after the applied impulse, g(F,T)

is constant at all spatial locations less than Ic j from the point of
5

aopiication of toe impulsive force and is zero at all spatial locations

,r 'a,, r thin Iles A s time inrrpase5, he re'lion o ursIant displacement

• 'r i'> '., "], 1infr ./ t t mm, Tiymrptrirtally 1 i b out the point of excitation.

- -3I?
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g(Q, 7.)

1'%' 1

c- Csr 0 cs 7

Figure 3-4. The Spatial Dependence of the Green's Function
of an Infinite String for a Fixed

We now turn our attention to the wavenumber-frequency response of the

infinite string. The wavenumber-frequency response, it will be recalled, is

defined as the wavenumber-frequency transform of the causal Green's

function. By equations (3-69), (3-70), and (3-79), the wavenumber-frequency
res ponse of the infinite, uniform string is given by

=~~) 2 +(- kc) - 6(w + kCs (3-82)
C[Wo2  (kc ) 2ickc

5 5

fi,]ures 3 5(a) and (b) illustrate the real and imaginary parts, respectively,

of G(k,,) as a function of k at a fixed, but arbitrary, frequency, W. Both

real and imaginary parts of G(k,w) are seen to be even functions of k. Note

that the real part of G(k,w) is the wavenumber-frequency transform of the

particular part of the Green's function, and the imaginary part is the

4 transform of the homogeneous part. Figure 3-5 shows that the wavenumber-

frequency response is well-behaved, except at those wavenumbers where

1k- KJ/cs . Let us therefore interpret the wavenumber-frequency response

in this wavenumber range (i.e., Jkl P jw/c 1) first.
5

Recall, by equation (3-62), that the waver, umber-frequency response can be

interpreted as the ratio of w(x,t) to f(x,t) when f(x,t) is a single complex

harmonic wave of the form ,'Ap{i(kx w (t)} for all x and t. Note, by equation

4(3 19 ) and figure 3 5, that when I k w/csl , the imaginary part of G(k,w)

is zero. As the imaginary part corresponds to the homogeneous solution, the
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wavenumber-frequency response, over the range IkI o Ic/cs5 , can be

interpreted as the ratio of the particular solution of equation (3-65) to the

-. forcing field f(x,t) = exp{i(kx + wt)}. This particular solution corresponds

. to the real part of the wavenumber-frequency response illustrated in

figure 3-5(a).

Consider now a fixed (but arbitrary) frequency of the harmonic wave

excitation, f(x,t) = exp{i(kx + wt)}. The particular solution to equation

(3-65) is w(x,t) = G (k,w)exp{i(kx + wt)}, where G , the amplitude of

- w(x,t), is the real part of G(k,w). By substituting this form of solution

into equation (3-65), one can see that when the magnitude of the wavenumber of

excitation is large compared with the free wavenumber (w/cs) of the string,

the applied force is primarily balanced by the tensile forces in the string

and the displacement, w(x,t), is in phase with the applied force. For a wave
in the string of the form exp{i(kk + WT)} and constant amplitude, tensile

forces increase with increasing wavenumber magnitude (i.e., decreasing

wavelength). Thus, in the wavenumber region IkI > jw/c 1, where tensile
5

. forces dominate, the response of the string to the constant amplitude applied

force must decrease with increasing wavenumber magnitude. For wavenumbers

, less, in magnitude, than the free wavenumber of the string, similar arguments

,? can be used to show that the applied force is primarily balanced by inertial

* forw, in the string. These inertial forces are independent of wavenumber and

act 180 degrees out of phase with both the tensile forces and the local

displacement. Thus, in the wavenumber range IkI < Iw/c I where inertial

forces dominate, the local displacement is nearly constant and out of phase

with the applied force.

_1 When the magnitude of the wavenumber of the applied force is in the

*' neighborhood of, but not at, the free wavenumber of the string, the tensile

. and inertial forces in the string nearly cancel each other, and the

displacement becomes very large. The relative phase between the displacement

- and the applied force in this wavenumber region is determined by the relative

. dominance of the tensile and inertial forces.

*rom the abovp disccussion, the real part of the wavenumber frequency

re,'pone defines the amplitude and relative phase of the displacement field
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resulting from the unit amplitude harmonic force, expfi(kx + wt)}, at all

wavenumbers and frequencies of the applied force except those characterized by

k = w/c

S

At the wavenumber-frequency combinations characterized by k =w/c s o

equation (3-82) and figure 3-5 show the real part of G(k,w) to be undefined

and the imaginary part to be a pair of weighted Dirac delta functions. The

imaginary part, introduced by the wavenumber-frequency transform of the

homogeneous part of the Green's function, characterizes free waves in the

string. Recall that these free waves were necessary in order that the Green's

function be causal. Regardless of the value of the real part of G(k,w) at

k = w/c , the delta functions in the imaginary part ensure an infinite, - S

displacement of the string when the steady state harmonic wave excitation

coincides with a free wave: that is, f(x,t) = exp{ik(x t cs t)} for any k.

:_ While this result is consistent with physical intuition, it is not possible,

by this example alone, to physically interpret the sopate roles of the real

and imaginary parts of the wavenumber-frequency response for harmonic

excitations coincident with free waves in the string.

With the above background, let us now examine the wavenumber-frequency

description (i.e., transform), W(k,w), of the space-time displacement field of

ne string, w(x,t), resulting from an arbitrary force per unit length, f(x,t),

applied to the string. By equations (3-S9) and (3-82), this wavenumber

frequency transform is given by

€.','-F(k,w) iFl k,wa)

W(k,w) 2 + ( - kcs) - +( +  kc (3-83)
2 [ (kcS) ] 2ickc S } (

where F(k,w,) is the wavenumber-frequency transform of f(x,t).

* Recall that W(k,w) defines the complex amplitudes of the various harmonic

waves of the form exp{i(kx + wt)} comprising the displacement field as a

function of the wavenumber and frequency characterizing each wave. Equation

(3 8 ) clearly shows that the displacement field is comprised of only those

* irmorri iave components present in the forcing field.
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At all wavenumber-frequency combinations, except those that characterize

free waves in the string (i.e., ikj = Ica/cs5 ), the amplitudes and initial

, phases of the wavenumber-frequency components of the displacement field are

defined by the product of the wavenumber-frequency transform of the forcing

function and the real part of the wavenumber-frequency response of the

string. This product is equivalent to a filtering of the forcing function, in

both wavenumber and frequency, by the real part of the wavenumber-frequency

response. Figure 3-6(a) illustrates how the magnitudes of the various

wavenumber components of the forcing function are filtered, at some fixea

frequency, by the magnitude of the real part of the wavenumber-frequency

response of the string. The product of these magnitudes is the magnitude of

the complex amplitude of the harmonic wave components of the displacement

field at the corresponding wavenumber and frequency. Figure 3-6(a) clearly

shows that, at any frequency, the magnitude of W(k,w) will be relatively large

* •at (1) those wavenumbers where F(k,w) is large and (2) in the neighborhood of

t-'c-s Ic if F(k,w) is nonzero in that wavenumber range.

Figure 3-6(b) illustrates the phase shift applied to the various

wavenumber components of the forcing function (at the same fixed frequency) by

the wavenumber-frequency response of the string. The initial phase of W(k,w)

at each wavenumber is determined by applying this phase shift to the phase of

F(k,w) at the corresponding wavenumber. Note that the phase at k + Wt/c is
5

undefined.

It will be recalled that the real part of the wavenumber-frequency

response of the string is undefined at all wavenumber-frequency combinations

* defined by Ikl = l /csl. It follows therefore, by equation (3-59), that

W(k,w) is undefined at any wavenumber and frequency where Iki = I /c I and
s

F(k,w) is nonzero.

* The above example illustrates a technique for obtaining the wavenumber-

- frequency response by treating the forced vibration of an infinite, uniform

-. '-. string. This example further shows that, given the wavenumber-frequency

- transform of the applied force and the wavenumber-frequency response of the

* string, a description of the harmonic waves comprising the displacement field

of the string can be determined and interpreted at all wavenumbers and
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N frequencies, except those coincident with free waves in the string, where the

wavenumber-frequency response is undefined.

The reason that the wavenumber-frequency response is undefined at

IkI = J./c 5 I is the absence of any loss mechanism in the mathematical model

of the string. As we will show in the next example, the inclusion of losses in

- the mathematical model permits definition of the harmonic waves comprising the

displacement field at all wavenumbers and frequencies.

3.4.5 The Forced Vibration of a Damped, Infinite String

Consider the displacement of a damped, uniform, infinitely long string

resulting from a force per unit length, f(x,t), applied to the string. The

damping force per unit length opposes the motion of the string and is

proportional to the local velocity. To ensure that this damping force is space

-. and time invariant, we assume this proportionality (denoted by r) to be

constant. The mathematical model of this system is given by

T - c - r -- = -f(x,t) , (3-84)
ax2  at2  at

where T and are, respectively, the constant tension and mass per unit length

of the string.

The Green's function for the damped string is the solution to equation

(3-84) when f(x,t) is replaced by 6(x - xo)6(t - to). As equation (3-84)

applies over all space and time, we let = x x0 and t = t t and

write the equation for the Green's function as

2 1 2a q 1 _ q _ r iL__(3-85)
o 2 c 2 2 c 2 T (c8 2

S S S

2
where it w l be recalled that c 2 T/c.S

As we did for the undamped string, we assume the particular solution,

, of equation (3-85) can be written in the form

3 -39
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00

gp(,t) = (21) -2 p(k,w)exp{i(k + wT)} dk di. (3-86)

-00

Then, by use of equations (2-38) and (3-86) in equation (3-85), arguments

identical to those used between equations (3-67) and (3-69) yield

J -1
G p(k,w) = 2 - 2 _ irw/c] (3-87)

C[cW (kc S) -ie

In anticipation of applying the initial conditions for the causal Green's

function in the same form as we did for the undamped string, we wish to obtain

* the wavenumber transform of the particular solution G (k,t) by the inverse
p

temporal Fourier transformation of equation (3-87). It is straightforward to

show, by partial fraction expansion of equation (3-87), that

G (~t)= 1exp(iwT) dw exp iwT) dw
p t 4l d(k) W - ir/(2c) - Wd(k) - ir/(2c) w (k)

(3-88)

-' where

d(k) = [kcs]2 [r/(2E)] 2  (3-89)

"* By reference 10, it can be shown that

- exp(iw-r) dw
ir/(2) dk 2niU(T)expf-[r/(2c) + iWd(k)]T . (3-90)

It follows, by equations (3-88) and (3-90), that

sin {wd(k)T}

G (k,T) (I/C)U(T)exp{-rT/(2c)}d (3-91)

S0(k)
Id
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Equation (3-91) is the wavenumber transform of the particular solution to

equation (3-85).

To obtain the wavenumber transform of the homogeneous solution to

equation (3-85), we assume that the homogeneous portion of the Green's

function can be written in the form

= (2) -  Gh(k,-)expik } dk (3-92)

By substituting equation (3-92) into the homogeneous form of equation (3-85)

and by realizing that the resultant integral applies for all , we obtain

the ordinary differential equation

d2 Gh r dGh 0 (3-93)(kc )2 Gh(39
d 2  k cd)

The solution to equation (3-93) is

Gh(k,) exp{-rT/(2)){A(k)exp[i)d B( Bk)ep[-id(k)]} , (3-94)

where (k) is given by equation (3-89).

As we argued for the undamped string, the causality condition that

g( ,T) = 0 for T < 0 at all can be translated to the condition that

G(k,T) = 0 for T < 0 at all k. Therefore, for a causal system, we require

that G (k,T) +- Gh(k,t) = 0 for r < 0. By equations (3-91) and (3-94),

this condition can be satisfied only if A(k) = B(k) = 0, from which it follows

that Gh(k.T) 0 for all k.

Therefore,

G(k,) =- G (k,r) (1/c)U(r)exp{-rT/(2c)} sin{w (k }95)pWd(k ) (3 5
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and

G(k,w) G p(k,w) 2 -1 (3-96)
C[2- (kcs)2 - irw/c]

Equation (3-96), which defines the wavenumber-frequency response for the

damped string, shows that the causal Green's function is completely defined

by the particular solution to equation (3-85). This result is in contrast to

the Green's function of the undamped string, where the inclusion of the

homogeneous solution was necessary to satisfy causality.

Before examining the properties of the wavenumber-frequency response, it

would be interesting to determine the causal Gieen's function of the damped,

infinite string for comparison with the undamped case. By use of equation

(3-89), it is evident that G(k,T), in equation (3-95), is an even function

of k. By use of reference 11 and the properties of the Heaviside function,

one can perform the inverse Fourier transform of equation (3-95) to obtain

g(%,T) = [I/(2ccs)]U{csT - ( -}expf-rF/(20)}0 [r/(?cc )2- 2s
"-'1 (3-97)

where 10 is the zero-th order, modified Bessel function of the first kind.

',rnml.r on of this result with the causal Green's function of the undamped

string, given by equation (3-81), shows that the damping introduces a temporal

decay (via the negative exponential) and a spatial decay (via the modified

* ' Bessel function) into the causal Green's function.

Figure 3-7 illustrates the spatial dependence of the causal Green's

function of the infinite, damped string at a constant time, T, after

1.* application of the impulsive loading. By comparison with figure 3-4, the

obvious difference between the Green's functions of the damped and undamped

strings is that the Green's function of the damped string decreases with

increasing magnitude of , in the range IkI < c T, whereas that of the
s

undamped string is constant in this range. Another difference, however, is

that the amplitude of the Green's function for the undamped string is

constant, whereas that for the damped string decreases with increasing r.
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Figure 3-7. Spatial Dependence of the Causal Green's Function
for a Damped, Infinite String

Let us now examine the characteristics of the wavenumber-frequency

response. By a rearrangement of equation (3-96), we can separate G(k,W) for

the damped string into its real and imaginary parts as follows:

2{[ - (kC)] 2~ /]

G(k,W) = 2 ] (3-98)
C [ 2  - ( k c S ) 2 [ r/ c 2}

Figures 3-8(a) and (b) illustrate the wavenumber dependence of the real and

imaginary parts of the wavenumber-frequency response of the damped string at a

fixed frequency, w, for a (constant) damping coefficient, r, such that the

ratio r/(c) = 0.1.

Comparison of figure 3-8(a) with figure 3-5(a) shows the real parts of the

wavenumber-frequency responses of the damped and undamped strings to be

similar, except in the neighborhood of k = tw/c s , where the response of the

damped string remains defined, whereas that of the undamped string is

undefined. In these regions of similarity, damping forces are insignificant,

so the physical interpretation of the wavenumber-frequency response of the

undamped string can be shown to apply to the damped string. At k = w/c

figure 3-8(a) shows the real part of G(k,w) to be zero. Recall, from the

discussion of the undamped string, that the tensile and inertial forces in the

string are in halance at this wavenumber. Thus, in the damped string, the

applied force at this wavenumber must be balanced by the forces due to
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damping. By inspection of equation (3-98), these damping forces are reflected

in the imaginary part of G(k,w).

Recall that the wavenumber-frequency response can be interpreted as the

ratio of w(x,t) to f(x,t) when f(x,t) = exp{i(kx + wt)} for all x and t. By

substitution of a solution of the form w(x,t) = G(k,w)exp{i(kx + wt)} into

equation (3-84), it is easily established that irw is the ratio of the damping

force per unit length to the displacement field, w(x,t). Recall, from the

example of the undamped string, that cw and ck 2Cs are the ratios of

the inertial and tensile forces per unit length, respectively, to the

displacement field. For the fixed frequency and damping coefficient selected

for this example, the ratio of the inertial force to the damping force is

10:1. With this background, the behavior of the imaginary part of G(k,w),

illustrated in figure 3-8(b), can easily be understood.

In the wavenumber ranges Ikl > lw/c 1, where tensile forces dominate

both inertial and damping forces, equations (3-98) and figure 3-8(b) show the

imaginary part of G(k,w) to be small and negative. In the wavenumber range

Ikl < jw/c s, inertial forces dominate tensile forces. However, as stated

above, the inertial forces are about 10 times greater than the damping forces,

so, according to equation (3-98), the imaginary part of G(k,w) is nearly

constant and about 10 times smaller than the real part of G(k,w) in this

Vavenumber range. At wavenumbers in the neighborhood of lw/c s, where the

tensile and inertial forces nearly balance, the imaginary part of G(k,w) is

dictated by the ratio of the displacement to the damping force. As the

inertial and tensile forces come into balance, the applied force must be

balanced by the damping force. For the typically small damping coefficient

used in this example, the displacement must be large to produce a force equal

to the applied force. Hence, the ratio of the displacement to the damping

force per unit length is large in the neighborhood of 1kl = w/cs. This

behavior is reflected in the imaginary part of G(k,w) depicted in figure 3-8(b).

As a final observation, note that at Ikl = jw/cs1

[ G(Iw/cs I,,) Im[G(Iw/Cs , w)] -i/(rw) , (3-99)
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where Im[] denotes the imaginary part. Thus, as the damping (dictated by r)
decreases, the imaginary part of G(k,w) tends to infinity at Ikl = (w/csI.
Further, as the damping coefficient decreases, equation (3-98) can be used to

show that the width, in wavenumber, of the negative peaks at k = ±W/c in

the imaginary part of G(k,w) decreases, while the amplitudes of the positive

and negative peaks on either side of k = ±w/c s in the real part of G(k,w)
increase. Thus, in the limit, as r tends to zero, the real and imaginary

parts of G(k,w) tend toward those shown for the undamped string. Further, by

this limiting process, the behavior of the real part of G(k,w) remains
interpretable as the damping tends to zero. The lesson here is that undamped

systems are best understood and interpreted when they are treated as limiting

cases of damped systems.

For the general case of the forced, infinite, damped string, the magnitude

arid initial phase of each of the various harmonic waves comprising the

space-time displacement field can be obtained as a function of the wavenumber

and frequency characterizing each wave. We first write

W(k,w) = IW(k,w)l exp[ia(k,)],

F(k,w) = tF(k, )l exp[i5(k,w)] , (3-100)

G(k,) = IG(K,)l exp[i(k,)]

where F(k,w) is the wavenumber-frequency transform of the applied forcing

field per unit length, f(x,t); a(k,w) and B(k,w) are the initial phases of the
harmonic waves comprising w(x,t) and f(x,t), respectively, as a function of
the wavenumber and frequency characterizing each wave; and cr(k,w) is the

argument of G(k,w). By use of equations (3-59) and (3-100), it follows that
the magnitude of W(k,w) is equal to the magnitude of F(k,w) filtered by the

magnitude of G(k,w). That is,

.-. IJW(k,w)j = JF(k,w)G(k,w)J - IF(k,-)l IG(k,-)j (3-101)4-..

It also follows that the initial phase, a(k,w), of each complex harmonic wave

comprising w(x,t) is equal to the initial phase, B(k,w), of the corresponding

wave component of f(x,t) shifted by the argument of G(k,w). lhat is,
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z(k,c) = 3(k, ) * +(k,) (3-102)

Figures 3-9(a) and (b) depict the filtering of the magnitude of F(k,W) by

* the magnitude of G(k,w) and the phase shift, o(k,), respectively, for the

infinite, damped string. By equation (3-101), the magnitude of W(k,W) will be

large when the product of the magnitudes of F(k,w) and G(k,w) are large. From

figure 3-9(a), the magnitude of G(k,w) has relative maxima at k = ±t/cs

Thus, unless IF(k,w)l is small in this region, IW(k,u))l will exhibit relative

maxima at wavenumbers characterizing free waves in the string. Other relative

maxima of IW(k,w)l can occur, at any frequency, in the neighborhood of those

wavenumbers characterizing large relative contributions to IF(k,W)I. Through

this filtering process, the relative amplitudes of the various harmonic waves

compr:sing the displacement field are determined as a function of the

wavenumber and frequency characterizing each wave.

Figure 3-9(b) shows that the phase shift applied to each wavenumber

component of Lhe forcing field, at a fixed frequency, by the wavenumber-

frequency response of the string is (1) small for Ikj large in comparison

to Im/C s , (2) -i/2 at IkI = w/c s1, and (3) approximately -,T for

IkI < Iw/c5 I.

As a final comment, it should be noted that the magnitude and phase of

.k , ) for the infinite, damped string, shown in figure 3 9, do not exhibit

the discontinuities or undefined response in the vicinity of the free

wavenumber found (see figure 3-6) in the magnitude and phase of G(k,w) for the

case of the undamped string. Thus, if one is interested in the response of a

system near such resonances, it is clear that some estimate of the damping or

* loss must be included in the mathematical model of the system.

-3.4.6 The Wavevector-Frequency Response of a Damped, Infinite Plate

This final examplt is included to demonstrate that the mathematical

. techniques employed to obtain the Green's function (or its informational

equivalent, the wavenumber -frequency response) for the systems illustrated

. ,bov,, which depend on only one spatial variable, can be applied to systems

rpqdirinq t':o or three irdependent spatial variables in their mathematical

"p 3-47
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model. The specific problem treated here is the wavevector-frequency response

of a uniform, infinite, damped plate.

A mathematical model for the forced vibrations of a damped plate is given
• " 12

by Davies. That model, in the notation adopted in section 3.3.2, states

that

2
4 aw(x,t) a w(x,t)

DV w(x,t) + r + 2 - f(x,t) , (3-103)
- at at2

where, for this space- and time-invariant system, the damping coefficient, r,

is assumed constant and f(x,t) is the force per unit area applied to the plate.

The mathematical model for the Green's function is obtained.by replacing

the applied force per unit area in equation (3-103) by S(x - T0)6(t - to),

where 6(x - x0) (x1 - x0 1 )6(x 2  x0 2). However, because the infinite

plate system is space- and time-invariant, we can define x -

[xI  x0,x2 - x021 and T = t - t and then write the equation governing theI
Green's function as

2
'-ag( , ) a ( , T

DV" ( ,) - r .----- = (3-104)
a2

As we did in the case of the forced vibration of the string, we assume a

particular solution, q (1,T), exists of the form

=(2-)~ -3~ kf1
J (pT Gi w~expt\~k- + WT)} dk dcw (3-105)

. By equations (3-104), (3-105), and (2-38) and arguments similar to those

" ~ employed between equations (3-61) and (3-69), it can be shown that

Gp (k, 2 (3-106)
*k 4  pW 2 iUr
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22
where k k + k

We argue here, as we did in the case of the vibration of the string, that

the causality condition that g(gt) = 0 for t < 0 at all I translates,

under wavevector transformation, to G(k,t) = 0 for T < 0 at all

wavevectors, k.

-' By a partial fraction expansion of equation (3-106), the particular part

of G(k,T) can be written as

00 00,, ; ir(i)+ ]~)ir(
(k1 - exp(iwT) dw exp(iWT) dwG.. p 4111Wd(k) W ir/(2p) + wd(k) W ir/(21j) - d(k) '

(3-107)

where

Sd(k) = [Dk4/ ] 2r/( (3-108)

Comparison of equation (3-107) with equation (3-88) reveals that the

particular part of Gr)for the infinite, damped plate has the same

mathematical form as the particular part of G(k,T) for the infinite, damped

string. It therefore follows, by the arguments of equations (3-90) and

(3-91), that

s. sin { ( k) T
G (k,T) = (1/P)U(T)exp[-r /(2p)] (3-109)

The homogeneous solution, g to equation (3-104) is assumed to exist in

the form

0 gh(§, ) (2-)-2  Gh(kx)exp{ik.&} dk (3-110)
h h°

;"'"t  ;'iO t ut nq equation (3-110) into the homogeneous form of equation (3-104)

nn hy re i 'rq that the resultant integral applies for all , we obtain

the ordinary differential equation

-.*/ "3 5')



TO 8209

2-
d2h dGhh + r h Dk 4gh  0 .(3-111)2

d d-rh(3il

The solution to equation (3-111) is easily shown to be

Gh(k,T) = exp{-rT/(2V)}{A(k)exp[iwd(k)T] + B(k)exp[-i d(k)r] } ,

(3-112)

where wd(k) is given by equation (3-108).

By the arguments given previously, the functions A(k) and B(k) are

selected to satisfy causality; that is

*G(k,) = G(k,r) Gh(k,T) = 0 , T < 0 , (3-113)

for all k. By equations (3-109) and (3-112), it is evident that equation

(3-113) can be satisfied only if A(k) = B(k) = 0. It follows that
G h(k,T) =0 and therefore

G(k,w) = G p(k, ) k4 12 (3-114)
D -k P - irw

A significant feature of the wavevector-frequency response of the

infinite, damped plate, described by equation (3-114), is that it depends only

on the magnitude of the wavevector (k) and not on its direction. Inasmuch as

G(k,w) is the ratio of the space-time displacement field, w(x,t), to the

forcing field, f(x,t), when the forcing field is given by exp{i(k-x + wt)} for

all x and t, it follows that w(x,t) = G(k,w)exp(i(k.x + wt)}. Thus, G(k,W)

can also be interpreted as the complex amplitude of the wave of displacement

of the plate that corresponds, in wavevector and frequency, to the wave that

excites the plate in motion. By the arguments of chapter 2, knowledge of the

frequency and wavevector magnitude determines the wavelength and period of a

(complex) plane harmonic wave. The direction of propagation is determined by

the direction of the wavevector and the sign of the frequency. Therefore, the

dependence of G(k,w) on only the magnitude of the wavevector can b.e

3-51I
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interpreted as a reflection of the spatial invariance, or isotropy, of the

i % plate. That is, for a unit amplitude, harmonic wave excitation of the plate,

the amplitude of the resultant displacement of the plate depends only on the

wavelength and frequency of the excitation and is independent of the direction

of propagation of the harmonic wave excitation.

Figures 3-10(a) and (b) illustrate the magnitude and phase of the

wavevector-frequency response of the damped, infinite plate as a function of

wavevector magnitude, k, at an arbitrary, fixed, positive frequency. At this

frequency, the (constant) damping coefficient was taken to be r = 0.1 P.

The behavior of the magnitude and phase of G(k,w) with k, depicted in

figure 3-10, is easily understood by recalling that for the harmonic wave

excitation exp{i(k.x + wt)), the displacement field is given by w(x,t) =

* G(k,w)exp{i(k.x + wt)}. Substitution of these displacement and excitation

fields into equation (3-103) reveals that for k < kp( ) M /D,
p

the excitation is primarily balanced by the inertial forces in the plate and

G(k,w) = w(x,t)/f(x,t) = 1/(-2 ). Thus, in this wavenumber range, the

magnitude of G is nearly constant with k, and the displacement is nearly

180 degrees out of phase with the applied force.

In the wavenumber range k > k (w), the applied forcP is primarily
p

balanced by the forces associated with the bending stiffness of the plate,
4

given by Dk w(x,t). Thus, in this wavenumber range, it follows that
4

G(k,w) = w(x,t)/f(x,t) - 1/(Dk ). Here, therefore, the magnitude of G
-4

decreases with increasing wavevector magnitude as k , and, as depicted in

* figure 3-10(b), the displacement is nearly in phase with the applied force.

In the neighborhood of Iki = k (w), the forces associated with bending
p

stiffness and inertia nearly cancel each other, and the applied forces are

* primarily balanced by the damping force, given by irww(x,t). The damping

coefficient, r, was chosen such that, at the fixed frequency of this example,

the damping force was one-tenth of the inertial force. Thus, at l k (W ),
pthe magnitude of G is about 10 times greater than it is in the wavenumber range

Ikj < k (w), where inertial forces dominate. The initial phase of w(x,t), at

.kl- kp(u), is seen to lag that of the harmonic excitation by 90 degrees.
p
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G(k, w)I

WA-,

WA ,

4

-: L 2 
V I + rk

0 k p(W)

Figure 3-10(a). Magnitude of Wavevector-Frequency Response

",.

____________p(__________)__

7r- -k

Figure 3-10(b). Phase of Wavevector-Frequency Response

Figure 3-10. Magnitude and Phase of the Wavevector-Frequency Response

of a Damped, Infinite Plate
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In figure 3-10, we plotted the magnitude and phase of the wavevector-

frequency response as a function of k (i.e., the magnitude of the wavevector,

k) at an arbitrary frequency for purposes of graphical convenience. However,

if one wished to use the relation W(k,w) = F(k,w)G(k,w) to determine W(k,W)

for an arbiLrary excitation of the plate, F(k,w), it must be realized that

% both the magnitude and phase of G(k,) are circularly symmetric functions in

the (kl,k 2) plane. To illustrate this circular pattern of the wavevector-

Q, frequency response in the k plane, figure 3-11 shows the locus of the maximum

magnitude of G(k,w) for the damped, infinite plate in the k plane at an

arbitrary, fixed frequency. As shown in figure 3-10(a) and illustrated in

figure 3-11, the magnitude of G(k,w) has a maximum at those wavevectors having

magnitudes equal to the free wavenumber of the plate at the frequency of
2 - 24 2 -

interest: that is, at k k w k kp here k M
1+ = k(p)w p

k 

k2

.-

kk

0P

0k

F-igure 3-111 Locus of the Maximum MagInitude of G(k,w)
fur a Damped, infinit k Plate

,0

0
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3.4.7 Summary of the Forced Response of Space- and Time-Invariant

Linear Systems

The approach to the forced response of linear systems taken in this text

is that of linear superposition by use of the Green's function. The Green's

function is defined as the response of the linear system, in space and time,

to an impulsive loading applied at any arbitrary location in space and at any

arbitrary time. Inasmuch as (1) any input can be expressed as a weighted

integral (summation) of impulses (i.e., Dirac delta functions) in space and

time and (2) any summation of solutions to the linear differential equation

describing a system also constitutes a solution to that equation, it then

follows that the response of the system to an arbitrary input can be expressed

as an integral of the Green's function weighted by the space-time excitation

field.

For space- and time-invariant systems, the coefficients of the linear

differential equations governing the system are constants. As a consequence,

the Green's functions of linear space- and time-invariant systems depend only

on the spatial separation vector, f, and the temporal difference, ,between

the coordinates of observation, (",t), and excitation, ( - ,t - -)

As a result, the relation between the output field, p( ,t), the input field,

f(;,t), and the Green's function, g(T,T), is the convolution given by

equation (3-52). This useful result states that, given the Green's function

gof a space- and time-invariant linear system, the output field of that system

resulting from any input field can, in principle, be predicted.

By a Fourier transformation of the Green's function solution on all space

and time variables, a simple algebraic expression is obtained that relates the

wavevector-frequency transform of the output field to the product of the

transforms of the input field and the Green's function. This relation is

4 given by equation (3-59). By this equation, the amplitudes and initial phases

of each plane harmonic wave component of the output field can be obtained,

-given the wavevector-frequency transform of the Green's function, G(k,w), and

the amplitudes and initial phases of the corresponding wave components of the

4 input. [he wavevector-frequency transform of the Green's function is called

the wavenumber-frequency response of the system because it can be shown to be

3-55
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equal to the ratio of the space-time output field to the space-time input

field when that input field is the single complex harmonic plane wave

exp{i(Z.7 + wt)} for all x and t.

Systems of practical interest in acoustics are causal systems. That is,

they respond only to past inputs and do not respond in anticipation of future

inputs. Therefore, in deriving the Greens' function or its informational

equivalent, the wavevector-frequency response, it is important to ensure that

the Green's function satisfies conditions of causality specified by

equation (3-53).

To illustrate the mathematical techniques for obtaining causal Green's

functions or wavevector-frequency responses and to demonstrate how the

wavevector-frequency description of forced space- and time-invariant systems

4 can be physically interpreted, illustrative examples are presented in

sections 3.4.4, 3.4.5, and 3.4.6.

, .,w
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CHAPTER 4

SPACE-VARYING LINEAR SYSTEMS

4.1 INTRODUCTION

The spatially distributed, continuous time systems of linear acoustics are

mathematically modeled by partial differential equations of the form of

equation (3-37): that is, by

Lx t{P(Xt)} = f( ,t) (4-1)

Here f( ,t) is the system input, p( X,t) is the system output, and L.,t{ } is

the partial differential operator defined (see equation (3-36)) by

J L M N

.t I = I 2 I ajmn( a x (a n
* j=O 1=0 m=a n=O (al 2)( am)( ) {

(4-2)

,he space- and time-invariant linear systems treated in chapter 3 'ere

tefined as systems having constant properties, or parameters, over all space

and time. In the mathematical model of acoustic systems specified by

equations (4-1) and (4-2), system parameters are reflected in the

coefficients, a (7,t), of the partial differential operator, L-_ }.
jlmn x ,t

Thus, for space- and time-invariant linear systems, we required that

a. (xt) = a = constant (4-3).3 almn(,t = jlmn

for all ; and t. By defining IL-. { } as that form of L- { } in whichI x,t x,t

, the parameters a jlmn(,t) are constants over all space and time (that ic,

,U.

" . (3 x j ax x
Oj-0 1 O m 0 n- 3

4<4
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for all x and t), it follows that space- and time-invariant linear acoustic

systems can be mathematically modeled by

iLt fp( ,t)} f(7,t) (4-5)

for all x and t.

In this chapter, we explore the wavenumber-frequency analysis of

space-varying, but time-invariant, linear acoustic systems. Space-varying,

time-invariant systems are those in which the parameters of the system vary in

space, but not in time. As we argued above, the system parameters are

reflected in the general mathematical model of the linear acoustic system

(equations (4-1) and (4-2)) by the coefficients a jlmn( t) contained in the

linear partial differential operator, L-,t{ }. Therefore, if the

coefficients a 1 mn in equation (4-2) describe the variation of the system

parameters over all space and are constant in time (that is,

, aj lmn (,t) = bjlmn(x) (4-6)

for all x and t), we can define the space-varying, time-invariant linear

partial differential operator, itL;-.,{ }, by

SJ _ M N

j:O 1=0 m O n\O 2 3

for all space and time. If L., { } is substituted for i L } in
0 it xt x,t

equation (4-]), it follows that space-varying, time-invariant systems in

linear acoustics are mathematically modeled by

it U- tfp(7,t)} f(;,t) (4-8)

for all X and t.

.he mathematica form of qiat ion (4-8) is an n th order linear part ial

- difterential equat on ,nth nronconstrt coefti (ient i inite (or closed) form

solutions cannot be obtained for most ordinary linear differential equations

S4 a

0,; ,, . . , . ,. , ,' . - ,", ,' , ,, ,. , ',, . - . , , . . , , . ... -,~ ,:,. . .
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greater than first order with nonconstant coefficients.l Therefore, our

exploration of space-varying, time-invariant acoustic systems cannot be

general. Rather, the primary emphasis in this chapter will be to obtain

wavevector-frequency descriptions of space-varying versions of some of the

physical systems treated in chapter 3. Comparison of the wavevector-frequency

descriptions of the outputs of space-varying and space-invariant versions of

the system will then be used to illustrate the effects of the spatial

variation. Another objective of this chapter is to develop and interpret

wavevector-frequency descriptions of certain space-varying fields that arise

in structural-acoustics.

Space-varying systems result from only two characteristics of the physical

system: (1) boundaries and (2) nonuniformities in the spatial properties

between elements of the system. Space-varying systems can therefore be

classified according to the source of the spatial variation. Bounded systems

are referred to as space limited, whereas unbounded systems are infinite.

Systems are termed spatially uniform or nonuniform, depending on the

respective absence or presence of spatial nonuniformities in properties over

the physical extent of the system. By use of these definitions, it follows

that space-varying systems can be classified into three categories:

(1) uniform, space limited, (2) nonuniform, spAce limited, and (3) nonuniform,

infinite. Uniform, infinite systems are, of course, space invariant.

Of the three categories of space-varying systems, the one most commonly

encountered, and best understood, in acoustic applications is the uniform,

space-limited system. Consequently, the primary focus in this chapter will be

on the wavevector-frequency characteristics of uniform, space-limited acoustic

systems.

As we did for space- and time-invariant systems, we will first present

some illustrative examples of free, space-varying systems and then explore the

forced response.

4.2 FRUE RESPONSE OF SPACE-VARYING, TIME-INVARIANT SYSTEMS

Recall that free systems are systems free of externally imposed inputs,

characterized by f(;,t) in equation (4-8). I'us, free, space-varying,

4-3
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time-invariant acoustic systems are modeled by equations of the form

L-,tfp(x,t)} = 0 (4-9)
it

Recall further, from the previous chapter, that free systems with losses

cannot be described in the wavevector-frequency domain. Therefore, the

illustrative examples presented below will be confined to lossless systems.

:- 4.2.1 The Finite String With Fixed Ends

Consider the free vibration of a string of length L, fixed at x 7-- 0 and

x = L such that no motion occurs at the ends. The tension, T, and mass per

unit length, c, are constant over the length of the string, 0 < x < L, and are

taken to be zero outside this interval. The equation governing the

% 0 displacement field of the string, w(x,t), can then be written as

2 2
b(x) - 0 (4-10)

l a axI

for all x and t. The spatially varying coefficient, b(x), that modifies T and

is defined by

b(x) U(x) (U(A L) =  4-11)
' ' '0 otherwise

where U(x) denotes the Heaviside function.

The requirement that the ends of the string be motionless translates into

the boundary conditions

V w(O,t) = w(L,t) = 0 (4-12)

for all t. To complete the statement of the free vibration problem, we assume

(as we did in the case of the uniform, infinite string) that the initial

di, plarement and velocity fields of the string are given by

w(x,O) w O(X) (4-13)

60

L%- "4



TD 8209

and
aw( xO)

at = vo(X) (4-14)

Equation (4-10) is equivalent to the mathematical statement

a w 1 w = 0 (4-15)

ax 2  c 2 at2

VS

2
for 0 < x < L and all t. Recall that cs  Tic. The space-limited nature of

this equation precludes a solution by the Fourier transform technique used for

the free vibration of the infinite string in chapter 3. That is, although we

may write the vibration field in the form

w(x,t) J(21)-  W(kt)exp(ikx) dk , (4-16)

substitution of this form into equation (4-15) yields

'A0
(21)-l I d w(kt) +  (kc 12  (k,t) exp(ikx) dk - 0 , (4-17)

fIdt 2 (kt}xPix

which is valid only over the spatial range 0 < x < L. Thus, we cannot argue,

as we did for the case of the free, infinite string, that

d W (k,t) 2-
2 i- (kc ) W(k,t) = 0 , (4-18)

dt

because equation (4-18) is a valid conclusion from equation (4-17) only when

* equation (4-17) holds for all x.

From the argument presented above, it is evident that the wavenumber

frequency description of the vibration field of the free, space-limited string

* cannot be obtained by direct application of Fourier transforms to the partial

differential equation governing the motion of the string. However, the free

'-" 4-5
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vibration of the finite-length string, fixed at its ends, is a classic problem

in acoustics, and the space-time description of the displacement field for

this system is derived in most standard texts on acoustics. Our approach,

therefore, to obtaining a wavenumber-frequency description of the free

vibration of the finite, fixed-end string is simply to perform a double

Fourier transform of the classical solution for the space-time displacement

field.

The space-time displacement field of the free, finite string with fixed

ends is generally obtained (see reference 2, for example) by a separation of

variables approach. This approach leads to a description of the displacement

field, w(x,t), in terms of a complete set of orthogonal functions, called

normal modes, in the variable x. Associated with each normal mode is a

Ai> natural frequency. The details of this solution prnredure for the space-time

field of the finite string are well documented (see references 2 and 3, for

example) and .will not be further reviewed here.

From reference 3, the space-time displacement field of the finite string

that satisfies the fixed-end boundary conditions of equation (4-12) and the

arbitrary initial conditions specified by equations (4-13) and (4-14) is given

by

w(x,t) > {C cos(Wnt) 0 On sin(wnt) Cn(X) (4-19)

for 0 < x < L and for all time. Here, the normal modes, denoted by n(x)
n* and given by

C. (x) = sin(nixlL) , (4-20)

n

form a complete set of orthogonal functions over the spatial interval

0 < x < L. The orthogonality condition is given by

(I am(X) n(x) dx (L/2)6 mn (4-21)

0

!ii 4 '
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where 6mn is the Kronecker delta. The modal natural frequencies, n' are

given by

W, = nirc /L (4-22), .. n s

The modal coefficients, C n and Dn, in equation (4-19) are determined by

the modal content of the initial displacement and velocity. That is,

Lh. *
C n = (2/L) Wo(X)%n(x ) dx (4-23)

% 0

.?I  and

L

D= 2/(nc) J (x)C (x) dx (4-24)
n*.. , 0n

14 0

As is evident, by equation (4-19), the space-time displacement field of

the free, finite, fixed-end string is expressed as a weighted sum of natural

modes of vibration of the string, where each natural mode of vibration is

characterized by a specific spatial pattern of displacement, a (x), and a

specific frequency of vibration, w The amplitude and initial phase of

each modal contribution to the displacement field is determined (see

equations (4-23) and (4-24)) by the initial displacement and velocity fields

of the string.

The wavenumber-frequency description, W(k,w), of the displacement field is

,. .defined as the double Fourier transform of the space-time displacement field,

w(x,t), over all space and time. That is,

S (Y-1

W(k,W) = w(xt)exp{-i(kx + wt)} dx dt (4-25)

* Equation (4-19) defines the space-time displacement field of the fixed-end,

finite string only over the spatial interval 0 < x < L. Outside this spatial
J.
.b

'.3 4-7
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interval, the string does not exist, so the displacement in the regions x < 0

and x > L is not defined. However, it is evident, by equation (4-25), that

the wavenumber content of W(k,w) depends on the displacement field outside, as

well as inside, the spatial interval 0 < x < L. Inasmuch as our interest is

in the wavenumber-frequency description of the displacement field of the

string in the interval 0 < x < L, we want to avoid contaminating that

description with wavenumber-frequency components arising from any assumed

displacement field exterior to this spatial interval. Such contamination is

avoided by requiring that w(x,t) = 0 for x < 0 and x > L.

For mathematical convenience, we define the space-time field w (x,t) as

the extension of the mathematical form of equation (4-19) over all x and t.

That is,'p.

WO (x,t) C cos(W t) + si n(u)t) CLn(x) (4-2b)

for all x and t. By use of Pquations (4-11) and (4-26). we can then express

the desired space-time displacement field as

w(x,t) = b(x)w,,(x,t) (4-27)

.-.'*. for all x and t. It is easily verified that the displacement field defined by

equation (4-27) is equivalent to that of equation (4-19) in the spatial

interval 0 < x < L and is zero elsewhere.

By equations (4-25) and (4-27), the wavenumber-frequency transform of the

space-time displacement field of the free, finite string with fixed-end

conditions can be written in the form

W(kW) = b(x)w,(xt)exp{-i(kx + Ut)} dx dt (4-28)

-°'.-.--

• By (1) substitution of equation (4-26) into Pquation (4-28), (2) expression of

the cos( t) nd sin(,,t) in their exponential f-"ms, and (]) us ..

4-8
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\, equation (2-38), it is straightforward to show that

'Cp
W(k,w) = I {(Cn - iDn)6(w - wn) + (Cn + iD n)MW + Wn)}In(k)

- n=l

(4-29)

where I (k) is the spatial Fourier transform of the n-th normal mode, space.- n

limited by b(x). That is,

In(k) = b(x)cLn(x)exp(-ikx) dx (4-30)

By expressing the normal mode, defined by equation (4-20), in exponential

form, we can write I (k) asn

In(k) = -{B(k - nn/L) - B(k + nn/L)} , (4-31)

where B(k), the Fourier transform of b(x), is easily shown to be

B(k) = L exp(-ikL/2) sinLkIL!2-4-
(kL/2) (4-32)

.. ., quation (4-29) shows W(k,w) for the free, finite string with fixed ends

to be a discrete function of w, with Dirac delta functions at all positive and

negative integer multiples of irc /L. At each wn, the delta function in

is multiplied by the wavenumber transform of the corresponding space-limited,

n-th normal mode and a weighting factor appropriate to the particular .

The wavenumber transform of the n-th normal mode can be seen, by equations

(4-31) and (4-32), to be continuous functions of k for all n. Thus, the

• wavenumber-frequency transform of the displacement field of the free, finite

string with fixed ends is discrete in w, but continuous in k.

As stated abcve, the continuous behavior of W(k,,) in k, at each wn'

,e;"Ats from I (k), the wavenumber transform of the n-th normal mode, space
* n

limited by b(-) :,, eq,,t' n (A -3 , 2rd ',1-32 it i ri rK tf (L

-4-

4... 4-9
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is, in general, a complex quantity and therefore influences both the magnitude

and phase of W(k,w). Figure 4-1 illustrates the magnitude and phase of

. 16 (k): that is, In(k) for the 6-th normal mode of the fixed-end, finite

string.

The magnitude of 16 (k), shown in figure 4-1(a) over the wavenumber range

-12r/L < k < 12ff/L, defines the magnitudes of the (complex) amplitudes of the

waves of the form exp(ikx) that comprise the spatial field defined by

b(x)cx6 (x). By equations (4-11) and (4-20) and use of the exponential form

for sin(nvx/L), it can be shown that

0O -90< x < 0

b(x)a 6(x) = (/2i){exp(idfx/L) - exp(-idnx/L)} , 0 < x < L , (4-33)

10, L < x <o

By the form of equation (4-33), it is not surprising that the largest

contributions to the wavenumber transform of b(x)a,6(x) occur at the

wavenumbers _bT/L. Indeed, it can easily be shown that the Fourier transform

of 06(x) alone, over all space, is the weighted pair of Dirac delta

,9 functions, 6(k - 6n/L) and S(k + 6r/L). It therefore follows that all

'.'-J.9 wavenumber contributions to 16 (k), other than those at t6i/L, result from

%- thp restriction, mathematically imposed by b(x), that the displacement field

""w h r, il to zero outside the spatial interval 0 < < L.

Figure 4-1(b) depicts the phase of I (k). Physically, this phase can be9._ 6
interpreted as the phase, at x = 0, of the various spatial waves of the form

exp(ikx) that comprise the space-limited, 6-th normal mode as a function of

the wavenumber (k) characterizing the spatial waveform. The phase is

presented modulo 21 in figure 4-1(b), so all discontinuities of magnitude 21

are merely scale adjustments. The phase discontinuities of magnitude n result

0L from the sign changes in 1 6(k) associated with the terms of the form

sin(kL/2)/(kL/2) in B(k - 6,r/L) and B(k - b /L). These discontinuities occur

at all inteqer multiples of 21T/L, except t6d/L. In between such

-- odi ontinuities the phase de(rase- linearly (with slope 1/2) with

' . ic reas i ng k.

0
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116 (k)

m L.

-~ k
-10/r -87r -6r -4r -2r 0 2r 47r 67r 8r 10/r
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Figure 4-1(a). Magnitude of 16 (k)

PHASE (RADIANS)

56,,

*, -6-T6-

*L L

Figure 4-1(b). Phase of 16 (k)

figure 4-1 Magnitude and Phase of ln(k) for the 6th Mode
of the Free, Finite, Fixed-End String
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Owing to the discrete nature of W(k,w) with frequency, it can be argued,

from equation (4-29), that the magnitude of W(k,w) can be written as

IW(k,w)I I r n  - iDn1 in(k)I 6(w - n)

n=l

+ IC + iD II n(k)l 6(w + Wn)}  (4-34)n n n

where I I denotes the absolute value. Inasmuch as C and 0 are real

constants, it is evident that the wavenumber dependence of IW(k,W)I at each

modal natural frequency, wn' is dictated by II n(k)I. To illustrate this

wavenumber dependence, figure 4-2 presents, in a waterfall-type display, the

I' magnitude of I n(k) as a function of k at each of the modal natural

* frequencies in the range -6cs/L <w n < 6c s/L. Superposed on this plot

ar, the free wavenumbers, k = c , of the infinite, uniform string treated

in section 3.3.1 of chapter 3.

By figure 4-2, it is evident that the largest (in magnitude) contribution

to W(k,w) at each natural frequency (with the exception of w+l) occurs

at k zw /c These contributions are associated with the maxima of
n 5s

IB(k ni/L) B(k * nit/L)J, which, by equation (4-31), dictate the wavenumber

jependence of I n(k) . It should be noted that, although the maximum of

B(k - nT/L) occurs at nn/L, the maximum of IB(k - nn/L) - B(k + nit/L)l is

shifted away from k = nn/L, owing to the interaction between the main lobe of

B(k - nv/L) and the side lobe of B(k + ni/L). The same argument applies to

the maximum of I n(k) at k = -nn/L. For large values of n, and therefore

high modal frequencies, this wavenumber shift is small. However, for the

*i lower order modes, this shift is significant. Indeed, at the first modal

frequency (i.e., n = 1), the main lobes of B(k - vIL) and B(k + niL) interact

to produce a single maximum at k = 0 rather than the expected pair of maxima

at k tn/L.

To the extent that (1) figure 4-2 illustrates, to within a frequency-

dependent scale factor, the wavenumber-frequency characteristics of the

0.

magnitude of W(k, ) associated with the free vibration of a finite,

- -- -412 - - - --
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Figure 4-2. I1n(k)I as a Function of k at Each of the Modal Natural
Frequencies in the Range -6irfcs/L <_ -n < birc5/L

fie-end string and (2) only wavenumber-frequency combinations that lie on

the lines k - +w/c can contribute to the free vibration of the uniform,
5

infinite string (see chapter 3), figure 4-2 illustrates the two essential

*differences in the wavenuniber frequency characteristics of the vibration field

0bet-,een the space- and time-invariant string and the space-limited, but

time invariant, string.

d 4-13
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The first difference is that the wavenumber-frequency transform of the

free vibration field of the infinite (space-invariant) string is a continuous

function of frequency along the lines k = ±w/c s , whereas that of the finite

(space-limited) string is a discrete function of w. The reason for this

* .difference can be traced to the boundary conditions. The infinite string,

owing to the absence of boundaries, can support the propagation of any

wavenumber component introduced by the initial conditions at the frequencies

= -tkc The fixed-end, finite string, owing to the boundary condition

that w(O,t) = w(L,t) = 0, can support propagation, over the spatial interval

0 < x < L, of only that discrete set of wavenumber components associated with

the normal modes of the string: that is, by equation (4-20), k = tnf/L.

According to the differential equation for the free motion of the finite

string (equation (4-15)), the string will support propagation of these

discrete wavenumber components only at the corresponding set of discrete

frequencies, = ±nc /L.

]he second difference in the wavenumber-frequency transforms of the fields

of the finite and infinite, uniform strings is that, at any given frequency,

the wavenumber content is discrete for the infinite string, but distributed

for the finite string. As discussed above, the string, in free vibration,

will only support propagation of waves characterized by k = ±t/c s . As shown

in chapter 3, the wavenumber-frequency transform of the displacement field of

,he infinite string consists, at any frequency, of a weighted pair of Dirac

delta functions in k: one at k = *w/c and one at k = -w/c It is also
s s

evident, by equations (4-19), (4-20), and (4-22), that only the wavenumber
frequency combinations related by k /C (where k = nn/L) satisfy

n n s n
* the governing equation for the displacment field of the free, finite string.

However, owing to the finite length of the string, we imposeo the restriction

that the displacement field, w(x,t), be zero outside the physical extent of

the string (i.e., x < 0 and x > L). It was this restriction that introduced,

* at each natural frequency ( n), wavenumber components other than on/C
nn s

in W(k,w). Such additional wavenumber components will be present in any

space -limited system if the space-time output field of the system is

restricted to be zero outside the physical bounds of the system.

Before leaving the example of the free vibrations of the fixed-end, finite

string, it is instructive to consider the relationship between the wavenumber

4 -14
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transform of the initial displacement and velocity fields and the modal

coefficients Cn and Dn . By writing

'p 00

w 0(x) = /(2v)fW0nx~k) dk (4-35)y0

and

00

v 0 (X) = I/(2f) Vo(k)exp(ikx) dk (4-36)

and substituting these expressions into equations (4-23) and (4-24), we can

show, by use of equation (4-30), that

* 00

C n /(irL) k)n (k) dk (4-37)

* and

00

D n /(nl 2 c ) f V0 (k)l (k) dk (4-38)

where the asterisk denotes the complex conjugate. Equations (4-37) and

(4-38) show that the modal coefficients, C and D , ace proportional to
n n

the integral, over all wavenumbers, of the wavenumber transforms of the

respective initial displacement and velocity fields filtered by I *(k), the
* n

conjugate of the Fourier transform of the space-limited, n-th normal mode.

Owing to the restriction that w(x,t) is zero outside the spatial interval

0 < x < L, neither W0 (k) nor V0 (k) can consist of only a single wavenumber

contribution of the form 6(k - ko). However, it is interesting to note, by

equations (4-37) and (4-38), that each such delta function contribution to

W or V produces an infinite number of nonzero modal coefficients, C or D0- 0 n n

If W0 (K) is proportional to IM(k), wnrLre M is a fixed, positive integer, it is

straightforward to show, by equations (4-37), (2-38), and (4-21), that

4-15
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Cn = ASnM, (4-39)

where A is the constant of proportionality. Thus, when W0 (k) is

proportional to I M (k), only the modal coefficient CM contributes to the

wavenumber-frequency transform. In a similar fashion, it can be shown that

when V0(k) is proportional to IM (k), all Dn1' , except DM , are zero.

These results stem from the orthogonality of the normal modes over the

interval 0 < x < L. That is, by the inverse Fourier transformation of

equation (4-30),

b(X)c, (X) = I/(2f) f In(k)exp(ikx) dk (4-40)

It then follows, by equation (4-21), that the orthogonality condition can be
4 expressed in terms of In (k) in the form

1/(21) f Im(k)ln (k) dk = (L/2 )6mn (4-41)

lhe orthogonality condition, as expressed by equation (4-41), can be used

* to aid the interpretation of the wavenumber filtering of W0(k) and V0 (k)

by n (K -In equations (4-37) and (4-38). By use of equations (4-13),

" 4 14), (4-26), (4-27), and (4-30), it is straightforward to show that

W0 (k) = C nn(k) (4-42)

n=l

-" and

4 V (k D In(k) (4--43)0" n nn

n=l

.. By equatons (4-42) and (.1-43), it is seen that the wavenumber description of

I tho hintial (-onditions can be expressed as a weighted summation of the

416
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wavenumber transforms of the various normal modes. Further, the modal

coefficients, C and D , are the same as those used in the space-time' n n'

domain to describe w(x,t). Substitution of equations (4-42) and (4-43) into

.- equations (4-37) and (4-38), respectively, yields

Cn =1 /(nL) CmIm(k)l n (k) dk (4-44)

-0 m=l

and

Dn = 1/(irL n) f2I W mDmIm(k)l n (k) dk (4-45)

- m=l

Note that the integrations in equations (4-44) and (4-45) are simply a

restatement of the orthogonality condition of equation (4-41). Application of

his orthogonality condition to equations (4-44) and (4-45) yields identities

-' for C and D
n n

It is clear from the above arguments that the wavenumber description of

*, the initial conditions can be viewed as weighted superpositions of the

,.,a,,pnumber transforms of the space-limited, normal modes of the finite

string. The coefficients that weight this superposition are the same

* coefficients that weight the normal modes in the space-time description of the

- displacement field, w(x,t).

It should be emphasized that the space-time description of the free

vibration field of the fixed-end, finite string given by equation (4-19)

applies for all time. In a fashion similar to that observed for the free

vibration of the infinite string, the "snapshot" in time of the initial

displacement and velocity fields of the finite string determines the modal

. coefficients C and D . By equation (4-19), it is evident that, given the, n n

-. normal modes and modal natural frequencies of the finite string, specification

* of these modal coefficients provides sufficient information to determine the

* space-time displacement field for all time.

4-17
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4.2.2 The Finite, Simply Supported Plate

As an example of a space-limited system in two spatial dimensions,

x = (xI x2 ), we next treat the free vibrations of the simply supported

plate illustrated in figure 4-3. Here, the flexural rigidity, 0, and the mass

per unit area, V, of the plate are constant over the physical extent of the

plate and are taken to be zero elsewhere. By defining the two-dimensional

space-limiting function, B((x), to be

1, 0 < x1 < L1 and
B(x) = {U(xl) - U(xI  - Ll)}{U(x 2) - U(x2  - L2)} =0 < x2  < L2 ,

, otherwise
(4-46)

the equation governing the displacement field, w(x,t), can be written as

'S 214 a w(x't)

',(x) DVw(x,t) + 0 (4-47)
', at2

for all x and t.
'f"

]he simply supporled boundary conditions require that the displacement and

the moment be zero at the boundaries of the plate. Mathematically, the zero

.-. displacement condition requires that

::' . 0 /
L2 //

..

00

,PLATE

Figure 4-3. Geometry of Simply Supported Plate
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w(O,x 2,t) = w(L1 ,x2,t) = w(x1,0,t) = w(x1,L2,t) = 0 (4-48)

for 0 < x1 <4 Li 0 < x2 < L and all t. The zero-moment boundary conditions

can be shown to translate to the mathematical statements

_______ a2w( L1,x,) _____ _____

a2w(O, x2 ,t) 2 ,x2t )  a2W(XlO,t) a2W(XlL2,t)
• 2 =2 =2 = 2 - = 0 (4-49)

axI  ax1  ax2 ax2

-, for 0 < x1 < Ll, 0 < x2 < L2, and all t.

For initial conditions, we again assume that

w(x,0) = W0 (X) (4-50)

and

aw(x,O)
v (X) . (4-51)

The free vibration of the finite, simply supported plate, like the

" space-limited string, cannot easily be solved by direct application of Fourier

transforms. However, it is easily solved by a separation of variables

'. approach in the space-time domain. The details of this solution procedure are
"" ,5

presented in standard texts (see Meirovitch, for example) and will not be

reviewed here. The separation of variables solution for the displacement

• field associated with free vibration of the simply supported plate is

W(x't) = {A cos(Wmnt) + Bn s in(wt}~x (4-52)

m=l n~l

, over 0 < x < L and 0 < x2 < L2 for all t. In equation (4-52), a mn(x),

the normal modes of the plate defined by

Smn (x) : sin(mx 1/LI)sin(nvrx2/L2) , (4-53)

* form a complete set of orthogonal functions, over the spatial area.

- 0 < x1 < L and 0 < x 2 < L2, that individually satisfy the boundary

- 4-19

,A



*TD 8209

conditions of equations (4-48) and (4-49). The orthogonality condition is

given by

j1  Cmn (X)qs (X) dx = (LIL 2/
4 )6mq 6 ns (4-54)

00

The modal natural frequencies of the simply supported plate, denoted by mn'

'4' are given by

1m/2{ 2 2}
;mn = (D/P) {(mi/Ll) 2  + (nir/L 2 ) 2 (4-55)

By use of equations (4-50), (4-51), and (4-52), the orthogonality

condition (equation (4-54)) can be used to show that the modal coefficients,

-- A and B are related to the initial conditions by
mn mn

Amn 4 xw () mnx) dx (4-56)

0 0

and

L I L2
:212

Bm n X0)amn(X) dx (4-57).-? '-' • mn - Ll L2 m Vo( _

12 m
0 0

To complete the specification of the displacement field of the free,

simply supported plate over all space, we define (as we did for the finite

string) the displacement field, w(x,t), to be zero outside the physical extent

of the plate: that is, outside the spatial region 0 < x1 < L and

-0 < x2 < L2. By defining w, to be the extension of the displacement field

of equation (4-52) over all x (that is,

w,(x,t) = {Amn cos(wmnt) , Bmn sin(wmnt)}) mn(x) (4-58)
,% m=l n=l

4-20
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for al1 x and t), we can then use equations (4-46) and (4-58) to express the

requisite displacement field over all space and time as

• w~~t) B~xw~o~~t)(4-59)

The wavevector-frequency description, W(k, ), of the displacement field is

obtained by the following multiple Fourier transform of the space-time field,.! w(x,t):

W(k,c) = J Jw(xt)exp{-i(k.x + wt)} dx dt (4-60)

-00 -00

By substituting equation (4-59) into equation (4-60), it is straightforward to

show that

'""W(k, ) n >~T {(A - iBm)>(( - mn ) (A W Bmn)S(G )}I- - 'mn mn)( wmn) mn 'Bn6' n m

, , m=l n=l

(4-61)
* where

Imn(k) = f ( ) mn(X)exp(-ik.x) dx (4-62)

-00 _QC

By defining the Fourier transform of B(x) as

00

B(k) = 0(x)exp(-ik.x) dx

L LL exp{-i(klLl/2 + kL22)} (kL 1/2) j (k2L2/2) (4-63)

it follows, from equation (4-62), that In (k) can be expressed as

I m (k) = (I/4){B(k I - mTr/L1' k 2 + nf/L 2) B(kI + mn/Llk2 n/L 2 )

* .•B(k - mir/LL ,k  -T/k I  - mi/LlI k n/L2 (4-64)
11 2 fiT/L2) B"k1 1. 2 -,r/L2)"

4-21
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By equations (4-61) through (4-64), it is evident that the wavevector-

frequency transform of the displacement field of the simply supported plate is

discrete in frequency and continuous in both wavevector components, kI and

k The discrete frequency components occur as Dirac delta functions at

w ,where w are the modal natural frequencies of the plate. At each' 'mn' mn
modal natural frequency, the wavevector dependence of W(k,W) is dictated by

the product of (1) a complex constant, which depends only on the (real) modal

coefficients, and (2) I (k), the wavevector transform of the corresponding
mn

space-limited, natural mode of the plate. Note that at = -Wmn' the

constant that modifies I (K) is the complex conjugate of the constant that

modifies I mn(k) at w = mn

To aid in the physical interpretation of the wavevector-frequency field

given by equation (4-61), it is useful to employ the inverse Fourier

* transformation of equation (2-56) on equation (4-61) to obtain the following

description of the space-time field of the simply supported plate:

- ' /.~~~~-~ -I kep~(~ )

w(x,t) -f {(Amn iBn I'mn (k)exp[i(K-x + Wmnt)]

m=l n=l -

* (A + iB )I (k)exp[i(k.x - t)]} dk (4-65)
mn mn mn

By equation (4-65), it is seen that the space-time displacement field of the

simply supported plate is comprised of a superposition of complex harmonic

waves of the forms exp[i(k.x + mt)] and exp[i(k.x - mt)] over all wave-
mn mn

vectors, k, and over all discrete natural frequencies, mn' of the plate. At

* each natural frequency, the magnitudes of the complex amplitudes and the initial

phases of all harmonic wave components of the form exp[i(k.x + W t)] aremn
specified by the product (A - iB )I (k), and the magnitudes and

mn mn mn
initial phases of harmonic wave components of the form exp[i(k.x - Wmnt)] are

specified by the product (Amn iB )Imn(k). Note, by equation (4-61),

that these are the same products that specify the wavevector dependence of

W(k,w) at the discrete frequencies +wmn and -wmn' respectively.

* From equation (4-65), it is obvious that the magnitudes of the complex

amplitudes of the harmonic waves of the forms exp[i(k.x i t)] and
mn

4 -22
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exp[i(k.x - mnt)] are equal at any specified wavevector and natural

frequency and are given by

I(Aj )I_2)I~ /2 'in()

(AB mn)I mn(k)i  I(Amn + iBmn )I mn(k)I (Amn2 + Bmn 21 mn(k)l

8'rr2  81r 2  81r 2

(4-66)

Note also, from equation (4-61), that because W(k,w) is discrete in w, the

magnitude of W(k,w) is given by

A= (m + Bmn)2 I'mn(k)I{6( _ mn) + 6(w + Wmn)
: m~l n~l

(4-67)

By comparison of equations (4-66) and (4-67), it is clear that the wavevector
3

dependence of , at w = t mn is, within a factor of 8r , equal to

the magnitudes of the complex amplitudes of the harmonic wave components

exp[i(k-x + w mnt)] and exp[i(k-x - wn t)] that contribute to the space-

time displacement field at = .

Recall that A and B are constants that depend on the initial
mn mn

displacement and velocity conditions of the plate. It is therefore evident,

from equation (4-6-), that the wavevector dependence of IW(k,W)l at the

discrete frequencies w± is specified, to within a multiplicative
mn

constant, by Im (k) . To illustrate this wavevector dependence, figure 4-4
in

presents the magnitude of I (k) as a function of k and k for the
inn 1 2

6-6th (i.e., m = 6, n = 6) natural mode of a simply supported plate.

By inspection of figure 4-4, it is evident that I1 (k)l is character-
66-

ized by four primary maxima located at the wavevectors (6n/LI1,6n/L2)
(6I/L ...-6i/L 2 ), (-6n/L 1, 6n/L2 ), and (-6n/L1 -6i/L 2 ). From equation

(4-64), it can be established that the amplitudes of these primary maxima are

identical and equal to I- L /4. Figure 4-4 also shows secondary maxima that
1 2

occur at odd multiples of f/L along the lines k2 = -t6/L 2 and at odd*>' 1 26/1  2h mltdso
rultiples of f/L2 along the lines k 1 tb/L The amplitudes of

4-23
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SFigure 4-4. Magnitude of Imn(k) Versus kl and k2
for the 6-6th Mode of a Simply Supported Plate

these secondary maxima can be shown, by equation (4-64), to be less than

one-fifth the amplitude of the primary maxima.

It should be emphasized that I166 (k)l defines the relative magnitude of

)W(k,))l as a function of k only at the discrete frequencies 4w66. By

equation (4-66), 1166(k)I also defines, as a function of k, the relative

magnitudes of the complex amplitudes of the harmonic waves exp[i(k.x + W66t)]

and exp[i(kx - 66t)] that contribute to the space-time displacement field

of the plate at the frequencies ±w66" By figure 4-4 and the above6
arguments, it is clear that, although 116 6 (k)j is distributed in k, the

wavevector contributions occurring at the wavevectors (±6Ir/L 1,±6iT/L 2 ) are

significantly larger than those occurring at any other wavevector. Further,

the magnitudes of the wavevectors characterizing these primary maxima are

, equal. If we denote the magnitudes of the wavevectors associated with the

-. primary maxima of 116 6 (k)l by k66, it is evident that

S66 brL) (6/L 2 ) 212 (4-68)

4 -24
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By use of equations (4-55) and (4-68), it is evident that the -Ignitudes of

the wavevectors associated with the four primary maxima of 116 6(K)I are

characterized by

k66  v66 (4-69)

In chapter 3, the wavenumber characterizing the free vibrations (i.e., the

free wavenumber) of a space- and time-invariant plate at any frequency was

* defined by

kp(w) = 4 Ic. /D (4-70)

By comparison of equations (4-69) and (4-70), it is evident that the

I" magnitudes of the wavevectors associated with the four primary maxima of

*1 6 (k)l correspond to the free wavenumber of the plate at the natural

frequency, 66' associated with the 6-6th natural mode of the simply

supported plate.

The above observations regarding determination of the relative wavevector

dependence of IW(k,w)l at the discrete frequencies tw66 by examination of

l the wavevector characteristics of the magnitude of 16 6(K) can be extended to

any ot the natural frequencies, w . That is, the relative wavevector

dependence of IW(k,w)I at w is determined by the magnitude of I (k) formn mn
arbitrary values of m and n. Further, from equations (4-63) and (4-64), it is

straightforward to show that, for all m and n except unity, II (k)l is
mn

characterized by four primary maxima of amplitude L1L2/4 occurring at the

wavevectors (mn/Ll,nr/L2) , (-mi/Ll,nT/L 2) , (mi/Ll,-nr/L2) , and

(-mr/L, -nr/L 2). The magnitudes of these four wavevectors are equal and

given by

kmn = 4P'mn2/D = kp( mn) (4-71)

For m - I, the two a~sociated primary maxima at k = t+/L interact,

thereby producing a single, broader maximum at k 0. Similar arguments

ipply in k for n - .
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The initial phases of the harmonic waves of the form exp[i(k.x + wmnt)]

and exp[i(k.x - w nt)] that contribute to the space-time field of the freely

vibrating, simply supported plate at each wmn are seen, from equation (4-65),

to be determined by the arguments of the complex products (Amn - iB n) I mn(k)

and (Amn + iB n)I n(k), respectively. By equation (4-61), these are

the same products that specify the wavevector dependence of W(k,W) at the

discrete frequencies tw . As the argument of a product is the sum of themn

arguments of the terms comprising the product, we can gain some insight into

the initial phase by examining the individual arguments of (A + iB n)

and I (k).-',mn -

At any discrete frequency the modal coefficients A and B areS. taydiceefeu ncy n' mn Bmn

real constants. Thus, if we denote the argument of A - iB by e , the
mnn inn inn

terms A iB and A + iB contribute constant initial phase shifts
mn imn nmn mn

0of e and -e to the respective harmonic Waves exp[i(k.x + w t)] and* mn mn mn

exp[i(k.x -mnt)] that contribute to the space-time field, w(xt), at the
mnn

frequency mn
Imn

By equations (4-63) and (4-64), it is clear that the argument of Imn(K) is

a complicated function of k. However, after- some tedious manipulation, it can

be shown that

arg{I n(K)} = - ILl/2 k 2L 2/2 - (m n)ir/2) , j(k)n , (4-72)

where j(k) is a function that is zero or one, depending on the sign (as a

function of k) of the summation of terms of the form {sin(kiLl/2)

sin(k 22/2 )}/((k1L1 /2)(k 2L2/2)} that arise in Iinn (k) from various

combinations of B(k 1 mr/L1, k2 t nn/L 2 ). By equation (4-72), it is seen

that, in between the jumps of ±ir dictated by j(k), the argument of I (k) is a: ,' 'mn -

linear function of k and k Further, at each discrete frequency, the.1 2" mnn'

argument has a constant component that depends on m +- n.

The argument of I (k) described by equation (4-72) is much too
mnn-

complicated to illustrate as a function of k and k2 . However, at 6'
1 2' 6

the k dependence of argfl along the lines k tb6/L can be
1 66- 2 2

. shown to be identical to the argument of I6 (k) for the fixed -end, finite

string shown in fiQure 4-1(b).

44026
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By the above arguments, the initial phases, at x = (0,0), of the harmonic
waves of the form exp[i(k-x + w mn t)] and exp[i(k.x - wmnt)] that

contribute to w(x,t) at w = wmn are given by e mn+
mn + arg{I mn(k), respectively.

By definition of W0 (k) and V0 (k) as the wavevector transforms of the
initial displacement and velocity fields, w0 (X) and v0 (X), respectively,

equations (4-56), (4-57), and (4-62) can be used to show that the modal

coefficients are related to W0 (k) and V0 (k) by

A mn 2 J W(K)Imn (k) dk (4-73)
S. -

1 L2  -_

and

-"B 1 *
B Vo(k)i (k) dk (4-74)inn 2 J 0- mn'-

L1 L2mn -o -o

Equations (4-73) and (4-74) show that the modal coefficients, A and Bmn,
are proportional to respective integrals of the wavevector descriptions of the
initial displacement and velocity fields filtered by the conjugate of the
,avevector transform of the space-limited, mn-th normal mode.

Ihe restriction that w(x,t), and thereby v(x,t), be zero outside the
physical extent of the plate precludes W0 (k) or V0 (k) from consisting of a
single wavevector contribution of the form 6(k - ko), because such a form
corresponds to a space-time field of the form exp(ik-x) over all x. Rather,

by Fourier transformation of equations (4-50), (4-51), and (4-52), over all x,
-/ it is straightforward to show that

0

" WO(k) = (k) (4-75)
b..•".-.m=l n=l

S and

N." 4-27
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V0(k) = Imn Bmn I mn(k) (4-76)mm=l n=l

Thus, it is evident that W0 (k) and V0(k) can be expressed as a weighted

superposition of the wavevector transforms of the space-limited, normal

modes. Recall that these transforms are continuous in k. Note also that the

weighting coefficients, Amn and B mn, are those used to express w(x,t) in

the space-time domain.

The inverse Fourier transform of equation (4-62) is

B(X)cmn(X) W Imn(k)exp( kx) dk (4-77)
( 2 2 - -

By equations (.1-54) and (4-77), the orthogonality condition on (x) can be

]tr .inil ted into the o 1 owing orthogonality condit i)r, on I (k) "
Rn

I.0

)2 Imn(k) qs* (k) dk 4 2 mq ns (4-78)

,i - quit ion (.1 /B, it is evident that I mn(k. ,here m and n are inteqe:ri

between one and infinity, constitute a complete set of orthogonal functicns

over the interval (- ,- ) < k < This set of functions is the Fourier

conjugate of the complete orthogonal set formed by the normal modes,

(x). If equations (4-75) and (4-76) are multiplied by I (k) and
inn qs-
integrated over all k, the orthogonality condition of equation (4-78) can be

used to verify the relationships of equations (4-73) and (4-74) between the

modal coefficients, A and B , and the wavevector transforms, Wo(k),%--' mn mn''

I.-; and V0 (k), of the initial conditions.

4.2.3 Summary_ of Free Wave Characteristics of Space-Limited Systems

Ihe tree recpon,;.,; of the space-limited, time invaridnt linear systems

• tratd in the, abo.e (,im l, exh iit iertain c omniOn av'evec or frequenc7

":' .4 28
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characteristics. This section highlights certain of these common

wavevector-frequency characteristics and compares them to the characteristics

of the space- and time-invariant systems treated in chapter 3.

%. The wavevector-frequency description of the free response of space-
limited, time-invariant linear systems cannot, in the majority of cases, be

easily obtained by direct application of Fourier transforms to the governing

equations. Rather, most free, space-limited systems best lend themselves to

"4 solution in the space-time domain, where the solution is expressed as a

weighted superposition of the normal modes of the system. Each normal mode

defines an allowed spatial pattern of free response of the structure.

Corresponding to each normal mode is a modal natural frequency, which defines

the only frequency at which the system will support the free response defined

by the normal mode. The wavevector-frequency description of the response

* field of a free, space-limited system is obtained by appropriate Fourier

transformation of the space-time solution.

.he above procedure is in contrast to that employed in chapter 3 to obtain

the wavevector-frequency description of the free response of space- and

time-invariant linear systems. For these systems, the wavevector-frequency

description was obtained by direct transformation of the governing partial

differential equations into the wavevector-time domain. The resultant

ordinary differential equation in time was solved for the temporil

characteristics of the field. Subsequent temporal Fourier transformation of

this wavevector-time field led to the desired wavevector-frequency description.

Recall that the wavevector-frequency description (or transform) of the

response of a system defines the specific combination of harmonic plane waves

that comprise the space-time output field of the system. The space-time field

of the free, space-limited system is comprised of a superposition of harmonic

waves over an infinite set of discrete frequencies and over all wavevectors at

each of the discrete frequencies. The set of discrete frequencies is comprised

of all positive and negative values of the (positive) modal natural frequencies

of the system. At each discrete frequency, the relative amplitudes and phases
of the harmonic waves contributing to the space-time response field are

determined by the wavevector transform of the space-limited, normal mode

4-29
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corresponding to that discrete frequency. Thus, the waveector-frequency

description of the free response of a space-limited system is discrete in

frequency, but continuous in the wavevector domain. The continuous nature of

the wavevector-frequency description in the wavevector domain at each discrete

frequency can be traced to the requirement that the response of the system be

zero outside the physical extent of the system.

In contrast, the space-time fields of the free, space- and time invariant

systems treated in chapter 3 were comprised of a superposition of harmonic

waves over the restricted set of wavevector and frequency combinations that

can propagate as free waves in the system. The wavevector-frequency

description (or transform) of the response field of a free, space- and

time-invariant system is therefore characterized by nonzero values only along

those surfaces or lines, in the wavevector-frequency domain, on which the

* wavevector-frequency combination corresponds to an allowable free wave of the

. system.

* Owing to the absence of external forces in free systems, the 4avevectors

contributing to the free response of both the space-limited and space-invariant

systems are completely determined by those wavevectors present in the initial

conditions. In the space-limited system, the wavevector transforms of the

initial space time fields, filtered by the modal wavevector response, determine

t he modal coeffcients and, thereby, the cormplex amplitudes of the various

wavevertor components at each modal natural frequency. In the space-invariant

system, knowledge of the wavevector content of the initial fields and the

wavevector-frequency combinations comprising free waves in the system is

sufficient to completely define the wavevector-frequency description of the

free response field.

4.3 FORCED RESPONSE OF SPACE-VARYING, TIME-INVARIANT SYSTEMS

- Th- forced response of space-varying, but time-invariant, linear acoustic

sjstems is governed by mathematical models of the fo-m of equation (4-8): that

- 4is

it x't
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for all x and t. Recall that the space-varying nature of the system is

specified by the coefficients b jlmn() in the space-varying, time-invariant

linear operator, itL_,{ }, defined by equation (4-7).

In this section, we examine the input-output relationships for space-

varying, time-invariant linear systems and present two examples of the forced

response of space-limited systems that arise in structural acoustics.

The general input-output relationships for space-varying, time-invariant

- linear systems are developed from the same basic concepts as those used in

chapter 3 to treat space- and time-invariant systems. These concepts are

(1) the principle of superposition for linear systems and (2) the Green's

function, or impulse response.

* The principle of superposition for a general space- and time-varying linear

system is described by equations (3-36) through (3-41) in section 3.4.1 of

- hapter 3. Inasmuch as the space-varying, time-invariant linear systems of

interest in this chapter are a subset of space- and time-varying linear

systems, the principle of superposition described by these equations applies

"" to space-varying, time-invariant linear systems..

For space varying, time-invariant linear systems, the coefficients,

bjlmn(XL) of the linear operator, zL.. ( }, are independent of time, but are

functions of the spatial vector, 7'. Thus, the form of the linear opera*or

L-- { } is invariant with a change in the temporal origin, but not wiLh ait X ,t

change in the origin of the spatial coordinates. That is, by defining

t - e, where e is a constant, equation (4-8) can be written
.w *'

L= f('," - 8) (4-79)
- It x,T+e8{ 8)

However, it is easily shown, by equation (4-7), that

,

,(4-80)

It therefore follows, from equations (4-19) and (4-80), that

'...

,'. 4 -31
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) = f((,T + e) (4-81)

We can conclude, by comparison of equations (4-8) and (4-81), that the output

of a space-varying, time-invariant linear system resulting from the input

f(71 + e) is p(x,t + e)

It also follows from equation (4-8) that if T = - , where i is a

constant, then

ItL0+ ,t{p(+ ,t)} = f(" + 7,t) (4-82)

However, it is clear from equation (4-7) that

L_, (4-83)..~ ~~ i Itg ,t{  tgt

Therefore, the response of a space-varying linear system to the input

f( -+- z.t) is not equal to p( + z ,t).

By applying these concepts of superposition to the Green's function, or

space-time impulse response, of space-varying, time-invariant linear systems,

we can obtain general expressions for the input-output relations for such

systems.

4.3.1 Green's Functions For Space-Varying, Time-Invariant Systems

V The complete mathematical description of a system requires not only the

specification of a mathematical model governing the system, but specification

* of the response at the spatial and temporal limits, or boundaries, of the

system as well. Recall, from section 4.1, that there are three categories of

space-varying systems: (1) uniform, space limited, (2) nonuniform, space

limited, and (3) nonuniform, infinite. One primary difference between

* space-limited and infinite systems is the way the response of these systems is

specified at the spatial limits of the system.

For systems of infinite spatial (or temporal) extent, the response of the

0 system at the spatial (or temporal) limits is specified on the bas-is of

4 -32
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physical realizability, or causality. This requirement for causal response in

such systems is satisfied by selecting appropriate combinations of the

homogeneous and particular solutions to the partial differential equations

governing the behavior of the system. All systems treated in this text are

time invariant, and their temporal response characteristics are uniquely

determined by causal arguments. For spatially infinite, time-invariant

systems, causality conditions are applied to both the spatial and temporal

response characteristics to define a unique system response.

In space-limited, time-invariant systems, the response of the system at

its spatial limits, or boundaries, is specified as a part of the definition of

the system. The response of such space-time systems is then uniquely defined

* by the governing partial differential equation, augmented by the specification

of the required response at the spatial boundaries of the system (and, of.

* course, the conditions for temporal causality). The requirement of a specific

response at the spatial boundaries of a system usually implies the existence

of external inputs acting on the boundaries of the system. The spatial

boundary conditions can therefore be interpreted as an equation, supplementary

to that governing the behavior of the system, that defines those external

inputs (additional to those applied interior to the boundaries) required to

achieve the specified response on the spatial boundaries of the system.

' As a consequence of the different forms for specification of the responses

of infinite and space-limited systems at their spatial limits, different

, -,tical procedures are required to formulate the respective input-output

ationships for these space-varying systems. It is therefore convenient to

".rea- the Green's function solutions for infinite and space-limited versions

of space-varying systems separately.

5,

As a prelude to the development of these Green's function solutions,

certain remarks are in order regarding the role and treatment of such

solutions in this text.

With regard to the role, the Green's function solution for a linear system

* relates the output of the system to the input and the Green's function in an

integral form. This solution is general in the sense that, given the Green's

4-33
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function for the linear system of interest, the output field resulting from

any input field can be predicted. By appropriate Fourier transformation of

the Green's function solution, the wavevector-frequency description (or

transform) of the output field can be related to the wavevector-frequency

description of the input field and the wavevector-frequency response of the

system (i.e., the wavevector-frequency transform of the Green's function).

This transformed relationship has the same generality as the Green's function

solution. Thus, the role of Green's function solutions in the wavevector-

frequency analysis of acoustic systems is to provide the basis from which

general input-output relationships can be written in the wavevector-frequency

domain for various classes of linear acoustic systems.

Let us now address the treatment of the Green's function in this text.

The concept of Green's functions is a simple one. However, any rigorous

development of the theory of Green's functions for a general linear space-time

V system requires ndthematically complex and, consequently, lengthy arguments.

Morse and -eshbach devote over 100 pages to Green's functions, Courant and7 8 i

Hubert7 treat this subject in about 40 pages, and Greenberg8 devotes an

entire book to the development of a consistent theory of Green's functions.

While these references vary somewhat in the generality and rigor of their

-. respective treatments of Green's functions, they serve to illustrate the

futilitj of attempting to present a comprehensive treatment of Green's

- functions in a few pages. Inasmuch as the focus of this book is the

wavevector-frequency analysis of acoustic systems, we must conclude that a

rigorous treatment of Green's functions is beyond the scope of this text.

'p, Consequently, we rely on somewhat heuristic arguments for the development of

Green's function solutions of linear systems. For a more thorough treatment

of such solutions, the reader is encouraged to consult the references cited

above.

With apologies to the reader for this lengthy prelude, we now address the

Green's function solution for infinite versions of space-varying linear systems.

S43.11 The Green's Function forinfinite_ Nonuniform Time-Invariant

Lin eir Systems. An infinite, nonuniform, time-invariant linear system is one

in which (I) at least one of the coefficients, b (Z) of the linear
jlmn

-. 4 -3,

N . "
r-6.Nr-



j- TO 8209

operator itL ,t{ }, defined by equation (4-7), varies with and (2) at
least one of these coefficients, at any X, is nonzero. These conditions

ensure a continuous system over all space that has space-varying properties.

An example of an infinite, nonuniform linear system is an infinitely long,

uniformly tensioned string having a mass per unit length that varies (but

remains positive) over the length of the string.

Subject to the above restriction on the coefficients bjlmn(x), the

output, p(x,t), of the infinite, nonuniform, time-invariant linear system

resulting from the input, f(x,t), is governed by equation (4-8). Solutions to

this equation are restricted to those that are casual in space and time.
equatis defne ase thec

Recall that the Green's function, g(x ,t; O t 0 ) , is defined as the

response of the system at the spatial position and time t to an impulsive

input applied at the spatial location 70 and time t Therefore, the

Green's function for the infinite, nonuniform, time-invariant linear system is

defined by that combination of particular and homogeneous solutions to

t}- )s(t - to) (4-84)

that are physically realizable, or causal, over all space and time.

lhe condition for temporal causality is that the output, or response,

cannot anticipate the input in time. Therefore, for the Green's function to

be causal, we require that

g( ,t; 0,t) = 0, t <t

and (4-85)

•n ,
t t = 0, t < to , for all n.

atn

Spatial causality, for the infinite, nonuniform linear acoustic systems of

interest in this text, requires that the Green's function characterizes a

response to the impulsive input that either (1) propagates away from the

4-35
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spatial location of the impulsive input or (2) decays in amplitude with

increasing distance from the location of the input.

By noting the temporal form of the input in equation (4-84), we can take

advantage of the time invariance of the system, in the form of equation

(4-81), to write

it= (; - 0 )6(t - to) (4-86)

Thus, by comparison of equations (4-84) and (4-86), the Green's function for

the infinite, nonuniform, time-invariant linear system has the mathematical

form
g(,t;i opt0 ) = g(Zl t - tQ) (4-87)

Clearly, for this category of space-varying system, the Green's function

- depends on the two independent variables and t - t and on the parameter1 '"

Let us assume that the causal Green's function defined by cquation (4-86)

is known. By use of the sampling property of the Dirac delta function (see

equation (2-31)), we may then express the system input, f({,t), of equation

(4-8) as an integral (i.e., summation) of the product of a weighting function

and the delta functions that define the inDut for the Green's function. That

is,
,,'%,*

f(x,t) = f( to)6( - )(t - to) d 0 dt. (4-88)

By equations (4-87) and (4-88), the principle of superposition for linear

systems (see equations (3-39)-(3-41)) can be used to argue that

•C or,#

itL-;,t f {f(z 0 ,to)g(Y ot - t 0 )} d" 0 dt0

* f ff(; 0 ot )6(Z - O)(t tO) d7 dt0  f(-,t) . (4-89)

4-36
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By comparison of equations (4-8) and (4-89), it is evident that the causal

response of an infinite, nonuniform, time-invariant linear system to an

arbitrary input, f(T,t), is given by

00 0

p(it) = f(go to)g( ,_olt - t d0  dt0  (4-90)

-00 -00

By employing the change of temporal variable T = tO - to, equation (4-90)

may be written in the equivalent form

p((t)= Jc 0 t - t,)g(-Z,-X0 T) d7 0 dT. (4-91)
=~ f,

--go -00

Equation (4-90) or (4-91) is the Green's function solution for the

infinite, nonuniform type of space-varying, time-invariant linear system.

4.3.1.2 The Green's Function for Space-Limited, Time-invariant Linear

Systems. A space-limited system, as the name implies, is one which exists

over some limited portion of space. If, within this limited portion of space,

the properties vary with space, the space-limited system is defined to be

nonuniform. If the properties are constant over the limited portion of space

occupied by the system, the space-limited system is said to be uniform.

Our treatment of Green's function solutions to space-limited systems is
9based on the approach of Ffowcs-Williams et al. to such systems.

Consider a space-limited system that exists within the volume, V0

bounded by the surface, S We define the space-limiting function, s(x),
0'

to be

s(z) = U{o(x)} , (4-92)

where U is the Heaviside function defined by equation (2-32) and O(x) is a

function having the properties
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a (-) > 0 inside V0

a(7) < 0 outside V0 , (4-93)

d (0) -0on S0 .

Thus, s(x) defines a function that is one for I in V0 and zero for " outside

VO. By use of this space-limiting function, the governing equation for any

space-limited system can be written in the form of equation (4-8).

Recall that the system parameters (or properties) are reflected in the

space-varying, time-invariant linear operator itL *t{ } by the coefficients

b mn( ) For space-limited systems, such system properties do not pertain
jm"j x

,' outside of the spatial extent, V0, of the system and can therefore be set

to zero for x" outside V0. The same argument can be applied to the system

input: that is, any input acting outside of V is not acting on the

S : space-limited system and can therefore be set to zero. Thus, for space-

limited systems,

bjln(X) = s(x)rlm() (4-94)

and

f(;,t) = s(-x)q(X,t) ,(4-95)

where B jlmn() defines the parameters of the system inside V0 and q( ,t)

specifies the input to the system inside VO. Outside V., 5jlmn(7) and

* q(7 ,t) can be specified arbitrarily. Note that, for a uniform space-limited

system, In (x-) is not a function of 7. With B(l7mn ) and f( ',t) defined

by equations (4-94) and (4-95), equation (4-8) describes a space-limited,

time-invariant linear system.

We must now address a notational problem. Let us designate the

space-varying, time-invariant linear operator (of the form of equation (4-7)),

having coefficients bj(), by L- and an identical operator,
jlmn I t,b x ,t

* having the coefficients b. (7) replaced by 3 (7). by I- (1}
-. mn jlmn It,-3 x,t

4 38
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>- •That is,

bL+t( } = bjM n ( IjIm )/n\ (4-96)
bjl', xt~ xX~t ~ x2

bX j=O 1=0 m=O n=O

Jmand

JLL- M N jimn( x a a a ( n{ (4-97)

j=O 1=0 m=O n=O X2  m

In this notation, the additional presubscript identifies the coefficients of

the space-varying linear operator. By use of the notation of equation (4-96),

equation (4-8) becomes

It,b x,t( ,t)} = f(-x,t) (4-98)

For the forced, space-limited, time-invariant linear system, use of equations

(4-94), (4-95), and (4-97) allows us to rewrite equation (4-98) in the

mathematically equivalent form

' . s(x)t [L (t p(7,t)} = s( )q(-x,t) (4-99)

Equation (4-99) is the typical form of the governing equation for forced,

space-limited, time-invariant linear systems. To complete the specification

of the space-limited problem, the output, p(x,t), is subject to certain

restrictions (i.e., boundary conditions) on the boundary S.

Inasmuch as the system is space-limited to within V0  the desired output

of the system is also space limited and is nonzero only within V0 and on

S This desired output can be achieved by transferring the space-limiting
function, s(-X), inside the linear operator. For the terms in the linear

operator containing no spatial derivatives, this transfer presents no

problem. For example,

0001 at B000 1() at- (4-I00)
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However, in the transfer of s( ) inside the linear operator, each spatial

derivative generates an additional term. For example, it is easily verified,

by use of equations (4-92) and (2-32), that

ap( ,t) a {s( ,)(xt)}
7 0ax 1  ax 1

p

-11,- Bloo(-X)p(-,t)s{a,(-)} acx 411

1 0 0 ax l1

It follows that higher spatial derivatives will generate not only terms

involving products of p( ,t)a{c(CX)}, but also additional terms involving

products of various order spatial derivatives of p( ,t) and 6{a(-)}.

The above arguments demonstrate that transferring s(7) inside the linear

* operator gives rise to additional terms involving products of p( ) or its

spatial derivatives with 6{a(T)} or its derivatives. Inasmuch as the Dirac

delta function and its derivatives are zero everywhere except at the zeros of

the argument of the delta function, these additional terms can be interpreted

as additional inputs concentrated at those spatial locations where a( ) = 0.

However, by equation (4-93), these locations are on the bounding surface of

the system. Thus, the additional terms correspond to inputs, additional to

q(x,t), that act on the boundary, Sol of the system.
I.)'"

If we denote the collection of these products of p(Z) or its spatial

derivatives with 6{c(x)} or its derivatives by ZQ{p(7,t),6(a)}, it can be

shown, by arguments similar to those of equation (4-101), that equation (4-99)

* can be written in the form

L-,{s( )p(7,t)} = s(;)q(x,t) +ZQ{p(x,t),S(a)} (4-102)
It,(3 x't

* for all 1 and t.

-- Equation (4-102) is the governing equation for the generalized function

s(7)p(Z,t) that is valid for all space and time. lhe field described by this

* generalized function is equal to p(7,t) in the volume of interest, V0 , and

P "is zero elsewhere. The boundary conditions, in terms of appropriate
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specification of p(7,t) and its spatial derivatives on So t are the weighting

functions of the additional inputs described in Q{p( ,t),6(ci)}. Thus, by

absorbing the space-limiting function inside the linear operator, we have

transformed a finite space problem with boundary conditions to an infinite

space problem with additional inputs concentrated on the boundary.

The Green's function for the space-limited, time-invariant linear system,

as defined by equation (4-102), must satisfy

it,BL-;,t{g(,X0It - to)} = 6(Z - iO)6(t - to) (4-103)

over all and t for ;0 in V0 or on S For 70 outside V0 and So t the

right-hand side can be replaced by any distribution of sources. The Green's

function must satisfy temporal causality and must also satisfy some appropriate

* number of spatial constraints or conditions in order that it be a unique

solution to equation (4-103). For the moment, we leave these spatial

conditions unspecified.

We note that the input to equation (4-102) can be expressed as a weighted

superposition of the inputs to equation (4-103). That is,

'.

p s(x)q(7,t) + ZQ{p( ,t),S[o(7)]}

- - - to)[S(Xo)q( o t + d dto

(4-104)

By assuming that a temporally causal form of the Green's function is known and

by once again employing the principle of superposition for linear systems (see

section 3.4.1), it follows that

It 3L It ( ('0 't t 0)[s(-o)q(-; to) tFQ{p(o,to),'[o(X0 )])] do dto

0
. s()q(i,t) Q{p(0,t),6[([)]} (4-105)
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By comparison of equations (4-102) and (4-105), it is evident that

s(;)P( ,t) = f f g (T ';O 't - t O ) [s (;O )q (ZO 't O )

-00 -00

+ 2Q{p(70 ,to),6[0( 0 )]}] d70 dt0  (4-106)'p
Because we assumed a temporally causal Green's function, the output field

s(i)p(7,t) also satisfies temporal causality. However, we have not yet

identified the spatial conditions, or constraints, used to uniquely specify

the Green's function. The fact of the matter is that equation (4-106) is a

valid representation of the space-limited output for any set of spatial

* constraints sufficient to provide a unique specification of the Green's

function. That is not to say, however, that one can obtain a solution to

equation (4-106) for the space-limited output field for an arbitrary choice of

spatial constraints on the Green's function. Rather, in applying the Green's

function approach to space-limited systems, there is an element of art in

specifying the spatial constraints on the Green's function.

. Note that the first term in the integrand of equation (4-106) is simply

the contribution to the output from the inputs within V The second term

in the integrand represents the contributions to the output from the additional

inputs on the bounding surface, So l of the system. The goal, in selecting

the spatial constraints that uniquely specify the Green's function, is to

obtain the simplest, solvable mathematical form of equation (4-106). For

systems with inputs in Vol it is desirable to specify the spatial constraints

such that the terms related to the additional surface inputs vanish. Such a

choice leads to what Ffowcs-Williams9 calls the "exact Green's function."-,.

If inputs are applied only to the system boundaries (i.e., q(;) = 0 in V0 ),

then it is desirable to choose spatial constraints that minimize the

mathematical complexity of the integral containing the surface inputs. The

art of specifying such spatial constraints for space-limited systems can best

be illustrated by an example.

4 42

"0°o

S.O

LA-. - P -



TD 8209

Consider the acoustic pressure p(7,t) in the semi-infinite space x3 3 0

resulting from source type inputs, q(7,t), in the space x3  0 0. At the

boundary x3 = 0, either p(x,O,t) or ap(x,O,t)/ax3, where x = (XlX2),

is specified.

In the form of equation (4-99), the governing equation can be written

l a~( t) =

U(x3) V2p( ,t) - - a -U(x3 )q(7,t) (4-107)3 ~ c 2 at 2  3

where U( ) denotes the Heaviside function. It is easily verified, by use of

equation (2-32), that

V2 fU(x3)P(;,t)} = U(x)V 2 p(7,t) + S(x 3 ) ap(.t) {P(X,t)6(x
33 ~ .3* ax 3 ax 3 XL~~ 3 J

(4-108)

thus, equation (4-10/) can be rewritten in the form of equation (4-102) as

2 r - 1 a2 {U(x 3 )-p(,t)}' lUx (xt3
2{x3'J,) - -- 2

c at 2

N - -U(x-)q(,t) +6(x ) q * {p(,t) 6(x 3 ) (4-109)

3x3 3

ihe Green's function is defined as the solution to

2l ag(x'xO 't - to)

Sg(7, t- 1 - = -a( 2 - ) - to) (4-110)• vg( o' - o) at2

* that satisfies temporal and spatial causality. It then follows, by equations

•, (4-104), (4-106), (4-109), and (4-110), that

U(x )(;,t) f g( ;, 0 t - t0 IU(x 3 0 )q( 0 ,t O) 6(x 3 0 ) ax303 f fC 30 30 x 30

• )ax3 [p(Xolto)6(x 30) ] 1 d;_0  dt 0  ,(4-111) 3

30
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' where x0 = x x

By integrating the terms containing S(x3 0) on x30 (the first term

directly and tne second term by parts), we obtain

U(X 3)pci't) =f J q(-;,t - t 0)U(x 30 )q(70,t0 ) dZ0 dto%00 00
'W" - -Q

'A€

',.

+ .' F_ _ a g(P;(',o
; t - to )

,-0~ ap( %,O,to)
to) -ax 30  d4 dt0  (4-112)

where denotes [xlo,x?0] Note, by equation (4-112), that the space-

limited field U(x3)p(7,t) is expressed as the sum of a volume integral and a

surface integral. The volume integral represents the contribution to the

field from all inputs within the space x3 > 0. The surface integral

represents the contributions associated with those inputs on the surface

• = 0 required to produce the desired boundary conditions.

ior specif>i types of inputs and boundary conditions in this acoustic half

space, we can use equation (4-112) to illustrate the rationale for selecting

spatial constraints on the Green's function.

Consider first the case where the input, q( ,t), is nonzero. If the

pressure field at the boundary x3 = 0 is specified to be p(x,O,t) = 0 for

all x and t, it is immediately evident, by equation (4-112), that if we subject

the Green's function to the spatial restriction g(;;xO;t - to)= 0 for

all ;9 x., and t - to, then the surface integral vanishes and the space-

limited pre'sure field is given by

* I(x 3 (U x ,t) g(x.7,t to)U(x3 0)q(xo,to) d_7 dt0  (4-113)

A r,

, - -o

,-.- -.- 4 ,4
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Because the spatial restriction on the Green's function causes the surface

integral to vanish, this Green's function is, by definition, exact.

Spatial restrictions leading to an exact Green's function can also be

defined when ap(it)/ax3 = 0 at the boundary x3 = 0 for all x and t.

That is, by equation (4-112), it is evident that if we apply the restriction

ag(x;XoO; t - to)/ ax30 = 0 to the Green's function for all 7, k0'
and t - to, then the surface integral vanishes and the space-limited

pressure field is given in the form of equation (4-113).

Consider now the case where the input, q(7,t), is equal to zero for all

x and t. If either p(7 ,t) or ap(;)ax 3 is specified to be zero on the

boundary x3 = 0, then it follows, from equation (4-113) and the uniqueness

of U(x )p(7,t), that the output pressure field is zero for all space and
3

time. Thus, when q(T,t) = 0, the system has a nonzero response only if p(T,t)
or ap(Z,t)/ax 3 is specified to be nonzero at x 3 = 0. If p(Z,t) is

soecified to be p0(x,t) at x 3 = 0, it follows from equation (4-112) that

the simplest mathematical expression for the space-limited output results when

we require that g(;x ,O;t - to) 0 for all 7, %, and t - to . In this
w __ 0

case, the space-limited output field is related to the specified pressure at

the boundary by

C r% 8(T;x ;t - to)
U(x3)p(,t) = J Po(_oto) ax30 dxo dt 0  (4-114)

-00 -00

By similar arguments, a spatial constraint can be applied to the Green's

function to reduce equation (4-112) to a single integral when ap/ax 3 is
S specif-eu to be nonzero at x3 = 0. The specification of this constraint is

left as an exercise for the reader.

The above examples illustrate the manner by which spatial constraints on

* the Green's function can be selected to simplify the mathematical form of the

solution for one particular type of space-limited system. It should be

emphasized that the results of these examples cannot be extended to other

systems because the additional inputs generated at the boundaries by" incorporating the space--limiting function inside the linear operator depend on

the form of the linear operator governing the system.
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For an arbitrary, space-limited, time-invariant linear system, the general

Green's function solution is given by equation (4-106). However, without

knowledge of (1) the form of the governing partial differential equation,

(2) the definition of the space-limiting function, and (3) the boundary

conditions for the particular system of interest, the specific mathematical

form for the additional inputs on the bounding suirfaces cannot be defined.

4.3.2 The Wavevector-Frequency Response of Space-Varying Systems

By appropriate Fourier transformations of the Green's functiun solutions

for the forced response of space-varying systems, the wavevector-frequency

transform of the output field can be related to the corresponding transform of

the input field.

* Owing to the differences in the mathematical forms of the Green's function

solutions between the infinite, nonuniform and the space-limited types of

space varying systems, it is convenient to treat the wavevector-frequency

responses of these two types of systems separately. We will start with the

infinite, nonuniform type.

4.3.2.1 Wavevector-Frequency Response of Infinite, Nonuniform, Time-

InvariantLinear Sjstems. The space-time output field for an infinite,

nonuniform, time invariant linear system is related to the space-time input

field and the Green's function by equation (4-91). We first express the

space-time input field as the superposition of harmonic plane waves in the

form of equation (2-47). That is,

*4
f(;,t) = (2) J JF(aQ)exp{i(a.7 Q t)} da d, (4-115)

- o -or

where Iand Q denote, respectively, the wavevector and frequency components

of the input field. Substitution of equation (4-115) into equation (4-91)

yields

Sp(X,t) f(21)- f f g(, 0 ,)F(, Q)

:i.-~ - - -

e* Q(t - r)I} d 0  dT d dw . (4-116)
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If we define the wavevector-frequency transform of the output field by

00 00

P(Z,W) = Jfp(ZX,t)exp(i-_ +- wt)} d- dt ,(4-117)

it follows, from equations (4-116) and (2-38), that

P(k,) = (2 ) -  G(7, ,w)F(a,) da , (4-118)

-00

where - denotes the vector (- i,- 2,-3) and G(k,, ) is the two-

wavevector-frequency response of the system, defined bya,

00 o 00

- G(Z,&,) = J I Jg(7, 4 O,)exp{-i(i. + + WT)} 4) do dt (4-119)

00 -cc 00

Equation (4-118) relates the wavevector-frequency description, or

transform, of the output of an infinite, nonuniform, time-invariant linear

system to the corresponding description of the input and the two-wavevector-

frequency response of the system. Note that for this space-varying system,

the wavevector-frequency transform of the output field is expressed in terms

of an integral of the wavevector-frequency transform of the input field and

the two-wavevector-frequency response of the system. This is in contrast to

the algebraic relationship obtained in the wavevector-frequency domain for the

space- and time-invariant systems (see section 3.4.3). Further, for the

infinite, nonuniform system, the wavevector-frequency response of the system

is seen to be a function of two wavevector variables, whereas the wavevector-

-a,. frequency response of the space-invariant system was a function of a single
wavevector. This, of course, is a consequence of the separate dependence of

"1.

the Green's function for the space-varying system on x and , whereas the

Green's function for the space-invariant system depended only on the difference

between and 0
0*

-l Jo obtain a physical interpretation of the two-wavevector-frequency

i% response of the infinite, nonuniform, space varying system, consider the output

4-47
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field resulting from the single harmonic plane wave input field described by

f( ,t) = exp{i( 0' + Wo0t) (4-120)

The wavevector-frequency transform of the input field is then given by

*F(k,cw) = (21r) 46(k- k0 )S(w - W 0 (4-121)

so, by equation (4-118),

P(k,.) = 2,G(Z,-kO, 0 )6(w - W0) (4-122)

-, -. However, inasmuch as

p(,t) = (2,,) - 4  f f P(k,4)exp{i(k.x w t)} dI d, (4-123)

-00 -

"9. P(k,w) represents the amplitudes and initial phases of the various harmonic

plane waves comprising the output field. It therefore follows, by equations

(4-120)-(4-123), that 2TrG(k ,-kO,) represents the amplitude and initial
0'

phase of the harmonic plane wave component of the output field characterized

. by the wavevector k and frequency w resulting from excitation of the space-

varying system by the harmonic plane wave characterized by the wavevector k
0

and the frequency w0 Thus, for infinite, nonuniform, space-varying systems,

the two-wavevector-frequency response, G(k,;,w), defines, at each frequency,

. the response of the system at the wavevector k resulting from excitation of

* the system at the wavevector - .

The conversion, by the infinite, nonuniform, space-varying system, of one

wavevector component of the input field into different wavevector components

* of the output field is called wavevector conversinn. Recall that, in space-

and time-invariant systems (see equation (3-59)), each wavevector component of

the input produces, at any frequency, only the corresponding wavevector

component in the output field. Therefore, wavevector conversion does not

* occur in space-invariant systems. We can therefore conclude that wavevector
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convcrsion is a characteristic of space-varying systems that results from the

space-varying properties of the system.

Given knowledge of the wavevector-frequency transform of the input field

and the two-wavevector-frequency response of an infinite, nonuniform system,

one can (in theory) predict the wavevector-frequency transform of the output

field from equation (4-118). Further, as illustrated by equations (4-120)-

(4-122), one can determine the two-wavevector-frequency response of the

system, G(Z, ,w), as a function of V at any desired wavevector, Z, and

frequency, w, by exciting the system by a'single plane harmonic wave

characterized by the wavevector -0 and frequency w and observing the output as

a function of k. However, it is evident from equation (4-118) that, given

knowledge of the wavevector-frequency transform of the output field and the

two-wavevector-frequency response of the system, one is faced with the

* solution of an integral equation to determine the wavevector-frequency

transform of the input field.

4.3.2.2. Wavevector-Frequency Response of Space-Limited, Time-Invariant

Linear Systems. The space-time output field of a space-limited system is

related to the space-time input field, the boundary conditions, and the

Green's function by equation (4-106). For brevity, let us designate the

space-limited input and output fields by

f(7,t) = s(7 )q(Z,t) (4-124)

and

o(Z,t) = s(x)p( ,t) , (4-125)

respectively. By substituting equations (4-124) and (4-125) into equation

(4-106), we obtain

o(,t) f q((Z , 0 t t0 )[f(7 0,tO ) + IQ{p( 0 ,t0 ),6[(C7 0 )]}] d70 dt0

(4 -1 6
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We will deal with the wavevector-frequency response of space-limited systems

by considering three special cases of equation (4-126).

We first consider the case in which the boundary conditions imposed on the

.. system are such that it is possible to define an exact Green's function.

; Recall that an exact Green's function is one defined in such a fashion that

-. g(oI,,t - t0)[TZQ{p(7 0 ,t0 ),SLa( 0 )]}] d "0 dt0 = 0 , (4-127)

and therefore the output of the space-limited system is given by

o(It) f fg(,ot - to)f(o,to) d70 dt0  (4-128)
-0 -00

by foilowing the same arguments used for the infinite, nonuniform space-

varying system, it is straightforward to show that the wavevector-frequency

transform of the space-limited output field, O(kw), is related to the

wavevector-frequency transform of the space-limited input field, F(k,w), by

00

U 7 K ,2o ( IT) G( K, -, F ( , ) dz , (4-i29)
-3 C

where G(K, ,w) is the two-wavevector-frequency response of the space-limited

* system and is mathematically defined by equation (4-119).

The form of equation (4-129) is exactly the same as equation (4-118), and

the interpretations of this result and of the two-wavevector-frequency

response of the space-limited system are identical to those given for the

infinite, nonuniform system.

For the second case, consider a space-limited system with boundary

conditions and Green's function specified such that

O4
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j Jg(;,-aot - t 0)[ZQ{p(-X0,It0 ),6[a(_X0 )])] d-X0 dt 0 s 0 , (4-130)

-00 -00

but such that the product of the Green's function and the additional

forces imposed by the boundary constraints is known. Separate knowledge

of this product and the Green's function is equivalent to knowledge of

ZQ{p(o,t0 ),6[a(T 0 )]}. Thus, for this case, we assume that the

distribution of inputs at the boundary is known and is designated by

f (7,t). That is,
s

f (',t) = ZQ{p(T,t),6[d(7)]} (4-131)

By using the notation of equations (4-124), (4-125), and (4-131) for the

space-limited inputs within the boundaries, the space-limited output, and the

* distribution of inputs on the boundary, respectively, equation (4-126) can be

- rewritten as

o(,t) = f g(Z,o t- t0 )[f( 0,to) + fs(7 0 ,tO)] d 0 dt0  (4-132)

it follows, by arguments similar to those used above, that the wavevector-

frequency transform of the space-limited output is given by

"(k,)= (21) -  G(k" :&,w){F(;,w) + F (Z;,w)} di; (4-133)
*

ft "

where F (;,w) denotes the wavevector-frequency transform f (Z,t). Note

that, with the exception of the presence of the additional input term

-. associated with the boundary forces, the form of equation (4-133) is identical

to that of equation (4-129).

As an example of a space-limited system with known boundary inputs,

consider the semi-infinite acoustic system described in section 4.3.1.2, where

r'..

-' - -- .". *
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the source inputs, q(7,t), in the space x.3 > 0 and the normal derivative of
the pressure field at x3 = 0 are specified. The general Green's function

solution for this problem is given by equation (4-112). For notational

simplicity, we define

o(Zt) = U(x3)p( ,t)

and (4-134)

f(7,t) = U(x 3)q( ,t)

Also, we specify the normal derivative of the pressure at x= 0 to be
S'I3

ap(x,O,t)

ax3  a(x,t) , (4-135)

"here a(x.,t) is a kno.n function of x and t.

For this example, the Green's function is uniquely specified by requiring

that the solution to equation (4-110) be restricted by

:ag( ; 3,0;t - to)

ax30  (4136)

Thus, by use of equations (4-112) and (4-134)-(4-136), the space-limited

pressure field is given by

K o(Z,t) t g ,t to)f dt0

00

g(; 0,O;t to)a(o,t o ) d _0  dt0  (4-137)
*" " ." 

-0 -

* BI use of the inverse of equation (4-119), that is,
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00 00 00

g(7, _O,7 = (21r)-7 J J G(,(,)exp{i(k.x + ''0 + .,)} dr d- d.

(4-1 38)

the wavevector-frequency transform of the space-limited pressure field,

0(k,w), can be related to the wavevector-frequency transforms of the space-
limited source distribution and the specified pressure gradient on the

boundary, F(k,w) and A(k,w), respectively, by

0(k,w) = (21)- f j G(k,-cLw ){F(',w) - A(_,w)} dc . (4-139)

-00 -00

Clearly, equation (4-139) has the mathematical form of equation (4-133) with

* F (C) independent of a3"

As the final case of space-limited systems, consider a system with

boundary conditions and Green's function specified such that

00 00"I I.. .
f g(7,o't t 0 )[1Q{p(T 0 ,to),S[[( 0 )] } ] d'0 dt0 g 0 , (4-140)

* but such that some terms resulting from the product of the Green's function

and the additional inputs associated with the boundary constraints are not

known. This situation can arise when, regardless of the restrictions imposed

on the Green's function at the spatial limits of the system, the specified

boundary conditions do not provide the information required for the integrand

of equation (4-140) to be completely known.

* , In this case, the Green's function g( ,i t - to), the space-limiting

function s(x), and the external input field q(',t) are known. Thus, the first

product in the integrand of equation (4-126) is known. In principle, the

integr3tion of this first term can be performed, yielding a known function of

x and t. If we denote this known function by h(x,t), that is,

4-53
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i• ,then equation (4-106) can be rewritten as

''

II

00 00

s(;)p( ,t) = h(Z,t) + ,f fg(', 't - t0 )Q{p(o, to) , S[(t 0)]I d 0 dt0

--- 00

(4-142)

Because S[c( 0)] is the derivative of the known function s(*), the only

unknown in equation (4-142) is the output field, p(7,t), over all x and t.

However, as p(7,t) appears on both the left-hand side and in the integrand on

the right-hand side, equation (4-142) represents an integral equation for the

* unrestricted output field, p(Z,t).

[he treatment of such integral equations is beyond the scope of this

text. Therefore, no attempt will be made to define or describe the

wavevector-frequency characteristics of space-limited systems for which the

output is specified by integral equations. The reader interested in such

-, systems is encouraged to consult such standard texts as Morse and Feshbach 10

11
or Courant and Hilbert. However, it should be emphasized that, in this

text, -e restrict our attention to space-limited systems for which the

integrand of equation (4-126) is known. For such systems, the input-output

relationships in the wavevector-frequency domain are given by equation (4-129)

or (4-133), as appropriate.

• *.- Before we leave the subject of wavevector-frequency response of

space-limited systems, a couple of observations are in order regarding the

two-wavevector-frequency response, G(k,i,w), of space-limited systems.

- First, recall that the physical interpretation of the two-wavevector-

frequency response for space-limited systems is the same as that for the

infinite, nonuniform type of space-varying system: that is, G(k,a,w)

represents the response of the system at the wavevector k and frequency

resulting from excitation of the system by a unit amplitude input at the
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wavevector -- and frequency w. Recall further that, for the infinite,

nonuniform system, it was (theoretically) possible, owing to the infinite

5,.* extent of the system, to excite the system by an input characterized by a

single wavevector and frequency component (i.e., a harmonic plane wave

characterized by wavevector -O and frequency w). The resultant system output,

in this case, defines the two-wavevector-frequency response of the system,

G(k,c&,w), over all wavevectors k for those (fixed) input parameters, O and .

It would be desirable to employ such a procedure to determine samplings of the

two-wavevector-frequency response of the space-limited systems that one

invariably encounters in practice. However, owing to the space-limited nature

of the system, no such single wavevector-frequency excitation is possible.

That is, for F(k,w) to be a single wavevector-frequency component, f(x,t) must

be a harmonic plane wave, existing over all x and t. However, by equations

(4-92) and (4-124), f( ,t) is zero outside the spatial limits of the system,

* so excitation of a space-limited system by a single harmonic wave is

impossible. Therefore, for space-limited systems, it is impractical to

X'.. attempt direct measurement of the two-wavevector-frequency response of the

system. Rather, common practice is to obtain spatial samples of the impulse

response (or Green's function) as a function of time or frequency and, by

discrete Fourier transformation of these spatial samples, obtain an estimate

of the two-wavevector-frequency response.

the second observation regarding the two-wavevector-frequency response has

to do with a distinction in terminology. Recall that the two-wavevector-

frequency response defines the conversion, by the space-varying system, of

each wavevector component of the input, at any frequency, to all wavevector

* components of the output at that same frequency. This wavevector conversion

can result from either the space-varying properties of the system or from the

boundaries of the system. In acoustics, it is common practice to refer to the

wavevector conversion associated with system boundaries or abrupt discon-

• tinuities in system properties as wavevector scattering.

4.3.2.3 Summary of Wavevector-Frequency Response Characteristics of Space-

,aryLin( Systems. 1he space-varying systems treated in this text are limited

* to those in which all inputs (i.e., both external and boundary associated) to

the system are known. We omit consideration of space-limited systems in which

the output can only be specified as an integral equation.
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For space-varying systems with known inputs, the relation between the

wavevector-frequency descriptions of the input and output fields, F(k,W) and

0(k,w), respectively, has the general mathematical form

0(k,W) = (21) -  f G( ,- ,)F( ,) d) . (4-143)

Here, G(k,a,w) is the two-wavevector-frequency response of the system and

defines the response of the system at the wavevector k and frequency

resulting from a unit amplitude, plane wave input characterized by the

wavevector -t and frequency w. Thus, the two-wavevector-frequency response is

a metric of the conversion (or scattering), by the space-varying system, of

each wavevector component (-a) of the input field, at any frequency, into the

various wavevector components (k) of the output field at that same frequency.

For nonuniform, infinite systems, F(k,w) and 0(k,w), in equation (4-143),

represent the wavevector-frequency transforms of the respective input and

output space-time fields. These fields are infinite in spatial extent.

For space-limited systems, 0(k,w) represents the wavevector-frequency

transform of the space-limited output field and, for systems with boundary

Sconditions yielding an exact Green's function, F(k,w) represents the

.wavedector-frequency transform of the space-limited input field. However, for

Vsystems having boundary conditions incompatible with the specification of an

exact Green's function, F(k,w) represents the wavevector-frequency transform

of the sum of the space-limited input field and the additional space-time

* input field imposed by the constraints at the system boundaries.

4.3.3 Illustrative Examples of the Wavevector-Frequency Response of Space-

Varying Systems

* In this section, we present the wavenumber-frequency response of two

spare-limited systems having application to structural acoustics. These

s,stem are (1) the acoustic field in an infinite half space resulting from

excitation at the boundary and (2) the forced vibration of a simply supported,

flat plate.
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We first treat the problem of the acoustic half space.

4.3.3.1 The Pressure Field in an Acoustic Half Space Excited at the

Boundary. A common problem in structural acoustics is the prediction of the

acoustic field resulting from some specified displacement or velocity field at

"- . the boundary of the acoustic medium. Perhaps the most common version of this

problem is the acoustic field produced in an infinite half space as a result

of a known displacement field at the boundary of the half space.

Consider the acoustic half space depicted in figure 4-5. The half-space

x3 > 0 is occupied by a fluid of density p and speed of sound c. The space

x < 0 is vacuous. The displacement field on the plane x = 0 is specified
3 3

. to be w(x,t), where x denotes the two-dimensional vector (xl,x 2). The

consequent pressure field, p(',t), in the space x3 > 0 is desired. The

* pressure in the space x3 < 0 is, of course, zero.

ne pre-sure in the half -space x > 0 is governed by the homogeneous

wave equation

2-
2 - 1 a p(Xt) 0 x3 > 0 (4-144)
V p(xIt) 2c at2  3

for a1  x and t. 1he linearized momentum equation for the acoustic fluid

requires that, at the boundary x3 = 0,

ap(x,O,t) a 2w(,t)
S- P 2 (4-145)

ax3  at

In addition, the pressure field must satisfy the causal condition that

(because motion at the plane x3  0 is responsible for the pressure field in

the space x > 0) the pressure must propagate away, or decay with increasing

distance, from the boundary.

A Cr, s function solution for this space-limited acoustic field could be

Sr- , ri r)ing this system as a special case of the illustrative

Z_. .k -'r
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Figure 4--5. Geometry of the Acoustic Half Space

exdmpie presented in section 4.3.2.2, equations (4-13;)-(4-139). In this

special case, q(x,t) in equation (4-134) is equal to zero inasmuch as there

" are no sources in the space x3 > 0, and the boundary condition of equation

* (4-135) is replaced by that of equation (4-145). The Green's function is

governed by equation (4-1M0) for x 0 > . For x < 0, the Green's

function is governed by a similar inhomogeneous wave equation, but with an

initially unspecified distribution of sources on the right-hand side. This

* distribution of sources is then uniquely defined by -equiring the Green's

function to satisfy spatial and temporal causality and the restriction of

-. udtion (4 -136)

* A mor,, lirer t and commonl, , ed approach to this acoustic half-space

)ro tblem i; to ,olve the homogeneous .ave equation (equation (4-144)) subject

1)8

6
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to the boundary condition of equation (4-145). The wavevector-frequency

description of the space-limited pressure field can then be obtained by

appropriate Fourier transformation of the space-time field. This is the

approach that will be presented here.

In light of the emphasis placed on Green's function solutions to space-

varying systems in the previous sections, the reader is justified in asking

why this direct, rather than the Green's function, approach is being adopted.

The answer is that while the Green's function approach is most useful for

developing the general mathematical forms of the input-output relationships

for various types of systems and for introducing certain system concepts, it

is not necessarily the simplest mathematical approach for obtaining a solution

to a specific system. For the problem at hand, it is mathematically simpler

to solve the homogeneous wave equation, subject to a boundary condition, than

* to solve the inhomogeneous wave equation, subject to a constraint on the input

field. Whichever approach is taken, however, uniqueness demands that the

solutions be mathematically equivalent.

With apologies for this lengthy preface, let us proceed with the solution

for the problem of the acoustic half space, driven at the boundary.

lhe acoustic half space is invariant in time and in the two-dimensional

spatidl vector x. lherefore, we assume that the pressure field can be written

in the form

* (x,x 3 ,t) = (2 f) { P(kx 3 ,)Pxp{i(kox t)} dk d , x3  > 0

(4-146)

where k denotes the two-dimensional wavevector (kl,k2). Substitution of

equation (4-146) into (4-144) yields

"-fL d2 P(k ,x 
' ) 2 2

J -2----- - (k0  k )P(k x3 , expti(k. wt)} dk dw 0

(4-147)
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for x3 > 0 and for all x and t. In equation (4-147), k0 denotes the
22

acoustic wavenumber, w/c, and k denotes kl2  k2 , the magnitude

of the two-dimensional wavevector, k. Inasmuch as equation (4-147) is valid

for any choice of x or t, it follows that

m2
". d p(k, x3, ) 2

dx2  W+ (k02 - k2)p(k x3_,w) = 0 , x > 0 (4-148)

for all k and w. The general solution of equation (4-148) is

wP(k,x3 ,) = A(k,w)exp i k0 - k2 x3  + B(k,)exp{-i k0 2 kx 3}, x3 >0

(4-149)

*Substitution of equation (4-149) into equation (4-146) yields the following

expression for the pressure field in the half-space x3 > 0:

p(x,x3,t) = (2J)
-  [A(k,()explilk.x * - k2 x3 + ]

B(kw)exp i[k.x - k 0  - k x 3 + Wt]1 dk dw (4-150)

lhe functions A(k,w) and B(k,w) in equations (4-149) and (4-150) are

determined by application of (1) the causality, or radiation, condition that

* requires the pressure field to be comprised of waves which either propagate

away, or decrease in amplitude with increasing distance, from the boundary

x = 0 and (2) the boundary condition of equation (4-145). Let us first

examine the radiation condition.

At any fixed frequency, w, wave components of the pressure field described

by equation (4-150) that propagate away from x - 0 in the positive x

direction are those characterized by the exponential forms

expi [k 0  k 2 x3 *t]} , < 0

•4-60
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and

exp i[- k0  
2  x3 + Wt] ,W > 0

when k < ik01. It is also obvious, by inspection of equation (4-150), that

I waves which decay in amplitude with increasing distance in the positive

x3 direction from the boundary x3 = 0 must be characterized by the

exponential formxoxpo ex [ko k k> kol
exp{- k- k 0  x 3 1 x~ 0  k2 x3} >1 0

For the pressure field described by equation (4-150) to be comprised only of

waves consistent with these exponential forms, we require that
0

A(K,w) = 0 ,k < jk01 and w> 0

B(k,w) = 0 , k < Iko} and w <0 , (4-151)

B(k, ) = 0 k > IkoI for all w

By defining

P , ) k < I I(4-152)
"- A(k,w) 0

and

P2 (k, ) = A(k,w) , k > 1kol for all w (4-153)

we can expr-,c e(udt !on (4-150) in a form that satisfies the causality (or

* radiation) condition. That form is
*1.
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p(x,x3 ,t) _ l jr J P(k,,.)expi[k.x kx 3  l k2/k0
2 jdk

_N - k0x2 x

4- f P2 (K,)expi~~k k0  x3}e{ik-x} dklexpfiwtl dw
k>jko1

(4-1 54)

We now employ the boundary condition of equation (4-145) to determine

P I (k,) and P2(kco). This is most easily accomplished by first writing

w(x,t) in the form

w(x,t) = (21r) -3  W(k,w)expfi(k.x + wt)} dk d. (4-155)

-00 -..

lhen, by use of equations (4-154) and (4-155) in equation (4-145), we obtain

Jj P2W(k,w) + ik 1 - k2/k,2 P i(kwdexpfi(K- + wt)} dk

f p 2 k02 P 2(k,Wjexpfi(k-x 4- wt)} d w 0

k> Ik01
(4-1 56)

* which is valid for all x and t. It therefore follows that

2
ipw W(k,-)

P1 (k,w) =

k2 2
Sk 0  1 -k/ko0

and (4-1 57)

2-ph W(k,w)

0

' "P 2 (k ' ) . ...2.. 2
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Substitution of equations (4-157) into equation (4-154) yields the following

expression for the space-time pressure field in the half-space x3 > 0:

i2

1~~3 t -0 - ipW 2 W(K~cj)

(21r) $2 2
(2 k<k 0 1 ko0  1 - k /k0

expli[k.x - koX 3 1-k 2 /k 0
2 + Wt]I dk

-J j 2 -ko2 expjI-Nk 2- k 02 X 31exp{ik.x + wt} dk d

k -1k01 0k

(4-158)

Ihe pressure in the half-space x3 < 0, it will be recalled, is zero because

. that space is vacuous.

Comparison of equation (4-158) with equation (4-146) reveals that

P(k,x 3,c ) can be described in the half-space x3 > 0 by

" ... ....i('W-') expI- iko0x,3l k/k02 } k < ,koj

k" 0o / k 2/k 02

Sp(k,xW3,) =

-P- W(k, 2)exp -ik k0 2 x k > IkoI2 2
k -k/k

i /k k02(4-159)

Of course, P(k,x3,.))  is equal to 0 for x3  < 0.

I ]Ihe complete wavevector.-frequency transform of the pressure field in the

half space is obtained by Fourier transformation of P(k,x 3,w) on the x3

P~kX 3 cb) = 3

variable, lhis complete wavevector-frequency transform of the pressure field,
denoted by P(k,k31w), can be defined from equation (,-159) b use of the

Heaviside function. ]hat is,

4-63
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SiP 2W(k, ) 2 2x
U(x 3 )expl,-iIk 3 +k 0  1 - k /k0 J 3 x 3

W koVI - k2/k0
2  

-, k < Iko
P(k, k3 , )=

-P 2 W W
U (x3 expl-i[k3 - i Vk 2 - ko2]x3} dx3 , k > Ikol

r.'#. ll %k 2 - k02
jk ko(4-160)

The Fourier transform applicable to the wavenumber range k < Iko1 can be

recognized as a Fourier transform of the Heaviside function U(x3 ).

Papoulis 1 2 shows that

00

I U(x)exp(-ikx) dx = rS(k) +- l/(ik) (4-161)

Ihe transform applicable to the wavenumber range k > Ikol can be evaluated

by simple integration so, by use of equation (4-16]), it is straightforward to

-" show that the complete wavevector-frequency transform of the pressure field in

the half space is given by

2
-~PW W(k'W) {~k - 1-k/ 0

2v 2 o
k0  1 k '/k0+

l ,S K < _ 1 k o0 1

k3 tk 0  1 -k2/ko
2

3 0 0 '" (k k3 u

P(k,k ,W)
3'

-W 2W(k,w)
2" 2k2 2k > IkoI

0 3 - k0
(4-162)

Equations (4-159) and (4-162) represent two alternative forms by which a

wavevector frequency description of the pressure field can be related to the

ivevector frequency description of the displacement field at the boundary

* x O. Equation (4 159) expresses the complex amplitudes of those waves of

the form expfi(k.x * wt)} that comprise the pressure field on any surface of

4 64
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constant x3, in the range 0 < x3 < o, as a function of the complex

amplitude of the corresponding wave component of the displacement field on the

boundary. Equation (4-162) expresses the complex amplitudes of plane wave

components of the form exp{i(kx + k3x3 + wt)} that comprise the pressure

field as a function of the complex amplitudes of the surface waves of the form

exp{i(k.x + ut)} that comprise the displacement field at the boundary. Before

exploring the wavevector properties of these descriptions of the half-space

pressure field, it is instructive to examine certain physical interpretations

of these results.

Consider first the pressure field in the half-space x3 > 0 resulting

from an impulsive displacement, in space and time, at the boundary x3 = 0.

Let the pressure field resulting from this impulsive displacement field be

denoted by h(XX, x3 t, to): that is,

p(x,x 3,t) = h(x_,x 1x 3 t t 0

when

w(x,t) = 60(x -%)(t - to ) (4-163)

By equations (4-155) and (4-158), it follows that, for x3  > 0,

.2

h 10, 3't 0) 2)~ f[
2- kk 0  ko 1 - k /k

- 1- 2  02 t)]expji k.(x - o)  koX 1 k /k + W(t - dk
k3  0k~

exp{-k - 0  x3
k 2 2

k>lkol 0"dk]
e p'exp{i[k.(x xo) + w(t t o )]J dk . (4-164)
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For x < , x t'to) is equal to 0. By the form of the exponents
3 0,h x 3't't0

in equation (4-164), it is evident that

h(X,Xox 3,t,tO ) = h(x - ox ,t - to) (4-165)

This form of the impulse response is consistent with the invariance of the

acoustic half-space system in the x and t variables and with the space-limited

nature of the system in the x3 coordinate.

By writing W(k,w) in equation (4-158) as the multiple Fourier transform of

w(To,to) and interchanging the order of integration, it is easily shown,

-.. by use of equation (4-164), that the pressure field in the half space is

related to the displacement field at the boundary and the impulse response by

p(x,x3 ,t) = h(x - xox 3,t - to)w(xo,t) dx0 dt0 . (4-166)

It is straightforward to show, from equation (4-166), that

=P(k'x3' H(k,x 3,,)W(k,W) (4-167)

. and

P(k,k 3, ) = H(k.,k 3, )W(k, ) , (4-168)

where H and H denote the two- and three-wavenumber-frequency transforms,

respectively, of the impulse response, h. By comparison of equation (4-167)

witn equa oLio t it is vl6ent thot, for x3  > 0,

2
'3o! k2 expl-ik 0  1 -2 x3  , k < 1k01

*k . 1- k/ k
H(k,x 3, ) =

2 2

-ko0

(4-169)
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Sand H(kx 3  0 for x3 < 0. Similarly, comparison of equation (4-168)

with equation (4-162) reveals that

kmW

'f k 0 12 i t 1 k 3 + k0  1 -
- k <oI

+ 1 2, kS k i

k+ -k2/ko 2  k1
k3 + k0 -

.3,. H(k,k3, ) =

2-P k > Ik0 l

k k 2 * k2 
- k20 k3  k k0

(4-1 70)

I
The quantity H can be interpreted, from equations (4-146) and (4-167), as

" the ,.'avevector-frequency response of the acoustic half space to displacement

- at the boundary x3 = 0. That is, by arguments similar to those used in

section 3.4.3, H(k,x3,w) can be shown to represent the ratio of the

space-time pressure field to the space-time displacement field at x3 =0

when that displacement field is a complex wave of the form exp{i(k.x ,,t)}.

H(k,k3, w), the Fourier transform of H(k,x 3, ) on the variable x3, is

simply the ratio of the complex amplitudes of the plane wave components of the

form exp(i(k.x +- k 3x3 1- wt)) that comprise the pressure field to the

4' complex amplitudes, at corresponding values of k and w, of the waves of the

form exp{i(k.x + wt)} that comprise the displacement field at x3 = 0.

I One might be reasonably curious as to the relationship between the impulse

response, h(x - x t - t ), and the Green's function, g(, o t - t),
_ O" 0 0 0for the semi-infinite acoustic system presented as an illustrative example in

section 4.3.2.2 (see equation (4-137)). To specialize this illustrative

Iexample to the problem of the acoustic half space driven at the boundary, we

* first note that, inasmuch as the half space is driven only at the boundary, no

sources are present in the space x, > 0, and thereby q( ,t) = 0. By

.equition (,-134), this implies that f(x,t) = 0. Further, from the boundary

tondition for the acoustic halt space (equation (4-145)), it follows that

* 'a(x,t) in equation (4-135) is given by
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b2
.'a a 2ixt)

,'a(x,t) = -p awt)(4-171)
, 'at 

2

With these conditions applied to equation (4-137), the Green's function

solution for the acoustic half space driven at the boundary can be written

2WX

a 'wo),t0 odt0  (4-172)

o( ,t) = g(l,x ; o,O;t - to) P 2 dk 0
-00 --G t0

By recognizing that the acoustic half-space system is invariant in the

two-dimensional spatial vector, x, and by using equation (4-134), it follows

that equation (4-172) has the form

00 0 0  x3 ; ta 2 -(, o
U(x3 )p(Zt) J g(2 - ;x3 ' ;t - to) P a 2  d dt

- - at0
-00 -O 0

(4-173)

As the only x3 variation in the integrand of equation (4-173) is that

associated with the Green's function, it follows that the Green's function

, must be of the mathematical form

g(x - o;x 3 ,0;t - to) = U(x3)g'(x - x_;x ,0;t - to) , (4-174)

where g' is a function equal to g in the half-space x3 > 0, but of arbitrary

specification in the space x3 < 0.

lhe product of the fluid density (p) and the second derivative of the

*i boundary displacement (w) with respect to time in the integrand of equation

(4-173) can be interpreted as the inertial force of each unit volume of fluid

at the boundary. It follows that the Green's function, g(x - _;x3 , 0;t - to),

* can be interpreted as the pressure field resulting from an impulsive inertial

* force applied to a unit volume of fluid at the boundary x3  0. This interpre-

,. tion i, in contrast to that of the impulse response h(x_ x ;x ;t - t

defined by equation (4-163), which represents the pressure field resulting

from an impulsive displacement at the boundary.
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It is straightforward to show, from equations (4-155) and (4-173), that
-N

U(x3)P(kx 3 ,W) = -G(k;x 3,O;w){p2W(k,w)} . (4-175)

Further, by comparison of equations (4-167) and (4-175), it is evident that

G(k;x3, ;) = -H(k, x3,w)/[pW 2 (4-176)

Clearly then, the wavevector-frequency response associated with the Green's

function is related to the wavevector-frequency response associated with

the impulse response, h(x - Xo;x 3 ;t - to). By substitution of equation

(4-169) in equation (4-176), an expression for the Green's function,

g(x - -O;x3 'O;t - to)' can be obtained in terms of an inverse Fourier

[ •transform. This procedure is left as an exercise for the interested reader.

If we denote the three-wavenumber-frequency transform of the Green's

function by G(k;k 3,O;w), it follows from equation (4-176) that

G(k;k , O;) = -H(k,k3 ,W)/[P
2 ]  (4-177)

As a final note on the Green's function, it follows from equations (4-134)

and (4-175) that

2
O(Kk w) =-(K;k O;c){pw W(K, )} (4-178)

By comparison of equation (4-178) with equation (4-139) (with F(',W) set to zero
as no sources are present in the space x3 > 0 and with A(ow) = 2 )

there appears to be a difference in the two solutions. However, owing to the

* invariance of the acoustic half-space system in the two-dimensional spatial

vector x and in time, it may be shown that G(k,- ,w) in equation (4-139) takes

the form

2 VG. G( ,-L, w) (2r) 6(c, k)G(k,k3"at ,W)  ,(4-179)
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where G is the multiple Fourier transform of g(x - ;x3 ,x3 o;t - to)

on the variables x - %, x3' x30 ' and t - to. By substituting

equation (4-179) into equation (4-139) and performing the integration on (,

-. * ~.'we obtain

00

O(k,k 3 , ) = -d W(K,)1j G(k,k 3 ; a ; C) d3 (4-180)

However, the integral in equation (4-180) can easily be shown to be equal to

G(k;ki 0;w ). Thus, the result of equation (4-178) is not in conflict with,

but rather a consequence of, equation (4-139).

In some of the literature dealing with structural acoustics (see, for

example, reference 13), the pressure field in the acoustic half space is

* expressed in terms of the spectral surface impedance of the acoustic medium.

-he spectral surface impedance, Z I is defined as the ratio of the wave-

vector-frequency transform of the pressure field at the boundary x3  0 to

the wavevector-frequency transform of the normal velocity of the boundary.

The wavevector-frequency transform of the pressure field at the boundary is

specified by equation (4-159), evaluated at x3  0. The normal velocity at

the boundary, v(x,t), is the temporal derivative of the displacement field,

w(xt). By use of equation (4-155), it is easily shown that the wavevector-

frequency transform of the velocity field, V(k,w), is related to the 'wave-

vector-frequency transform of the displacement field by V(k,w) = iwW(k,w).

It therefore follows that the spectral surface impedance is given by

SZ s(k,w) P(k,0 ,)/V(k,w) P(k,0 ,)/[iwW(k,w)] (4-181)

A concept often used in conjunction with the spectral surface impedance in

acoustics is that of the spectral transfer function. The spectral transfer

function of the pressure field in the half space, denoted by T(k,x 3 ), is

the ratio of the wavevector-frequency transform of the pressure field at a

distance x3 from the boundary to the wavevector-frequency transform of the

pressure field at the boundary. That is,

0

T~k-, P~kx 3(4-182)
3 ) = P(k, 3, )
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It follows, by equations (4-181) and (4-182), that the wavevector-frequency
transform of the pressure field in the half space is related to the spectral

surface impedance and the spectral transfer function by

P(k,x 3,W) = Z 5(k,)T(k,x3,w)V(k,w) (4-183)

By comparison of equation (4-167) with equation (4-181), the spectral

surface impedance is related to the wavevector-frequency response,

H(k,x3,w), by
q3%

Z (k,,) = H(k,O,w)/(iw) (4-184)S5-

Further, by equations (4-167) and (4-182), the spectral transfer function is

related to the wavevector-frequency response by

T,# H(k,x 3 ,()T(kx 3,-) -H(K, (4-185)

By the above arguments, it is evident that the wavevector-frequency transform

of the pressure field in the half space can be expressed in terms of several

different, but related, descriptors. These various descriptors relate the

wavevector frequency description of the pressure field to wavevector-frequency

*descriptions of different physical characterizations of the excitation applied

- at the boundary. The selection of any particular descriptor for the

-. - wavevector-frequency analysis of acoustic fields is usually made for reasons
- of mathematical convenience or personal preference.

. Figure 4-6 illustrates the magnitude and phase of the wavevector-frequency

response, H(k,x 3 ,w), of the acoustic half space for an arbitrary, but

positive, frequency at three values of the dimensionless spatial variable

k 0x3  Recall, by equation (4-166), that H(k,x 3,w)expfi(k.x f- wt)} is

... the pressure field that results from the displacement field expfi(k.x w wt)}

applied at the boundary, x3  0.

lo aid in the interpretation of figure 4-6, it should firAt be noted, from

S *. e uait ;on (1 169), that the argument (or phrase) of H(k,x 3 ,.) is given by
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Figure 4-6(a). Magnitude of H(k,x 3 ,w) as a Function of k

k, X, 0 5

0 kxzQk
T- kr 2k0  3k0

0l

Figure 1-6(b). Phase of H(k,x 3,w) as a Function of k

fig ure .1 F) Mo gn tu d e a nd Ph fasep o t H k ,~w

*~~ 4 ~l ut k

41?%

0..-



TO 8209

sgn(() - k0  1 -k 0 x3 , k < Ikol

arg{H(k,x 3,W)} L 2 (4-186)
,k > Iko0

Therefore, it follows that the pressure field resulting from the displacement

field exp{i(k.x + wt)} applied at the boundary can be written

"U H(k,x 3 "')J expji[K-2x - kx 3  1 -k
2 /k 2 +~ wt ~-(i/2)sgn(w)]

p(xx 3,t) k < Ik

IH(k,x 3,) exp{i(k.x + ,t) + ir} k > k01

(4-187)

By equation (4-187), it is evident that, if the magnitude of the wavevector,

k, characterizing the displacement field, exp{i(k.x + wt)}, is less than or

equal to the magnitude of the acoustic wavenumber, k0 - (_c, of the fluid

moirn, the pressure field in the half space is a plane wave of amplitude

IH(k,x 3,)j, which is characterized by the wavevector k in the plane of the

boundary and by the wavevector -k0  l - k2k in the x3 coordinate

direction. Therefore, or a plane parallel to the boundary, this wave

propagates in the same direction and with the same phase speed as the

,',> ' nj e lt ...-ave at the boundary. In the x coordinate direction, the wave
3

away from the boundary at an angle 8 to the plane of the boundary.

'The ange e is given by

e = arctan k . (4-188)

The phase speed, c3, of the wave in the positive x3  direction is given by

c c (4-189)

* 1 k /k 0

-hprn the magnitude of the wavevector characterizing the displacement of

r t' i ,s jr ,,ter than the maqnitude of kO, equation (4 -181) reveals

. ,- r , o id in the half spic e, at any posit ie value of x3 ' is

cr rrterized by a wave of the same form as that applied at the boundary: that

4 -73
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is, by expfi(k.x + wt)}. However, the pressure wave is 180 degrees out of
phase with the displacement wave. The amplitude of the pressure wave is

specified by IH(k,x 3,9w)l and, according to equation (4-169), decreases

exponentially with increasing distance (x3) from the boundary. As the

pressure wave is characterized, on any plane of constant and positive x3, by

the same wavevector and frequency as the displacement wave at the boundary,

the wave propagates on that plane in the same direction and with the same

RM phase speed as does the wave on the boundary. These waves that propagate

parallel to the botndary, but decrease exponentially in amplitude with

distance from the boundary, are called evanescent waves.

Figure 4-6(a) presents the magnitude of H(k,x3,xw) normalized by pcw, the

value of H(k,x 3,(,,) at k = (0,0), as a function k (the magnitude of k). From
3the above discussion, the magnitude of H(k,x3,) represents (1) the

* amplitudes of the acoustic waves that propagate in x3 in the wavenumber

- range k < Ik01 and (2)-the amplitudes of the evanescent waves that only

propagate along surfaces of constant (and positive) x3 in the ,. avenumber

range k > Iko01. The normalized magnitude of H(k,x3,w) is presented for

three values of the normalized coordinate k0x3 : 0, 0.5, and 1.

Note first that, because the acoustic half-space system is space invariant

in the tw.o-dimensional vector variable x, the wavevector-frequency response,

H(k,x 3 ,w), is a function of only the magnitude of the two-dimensional

wavevector k. That is, owing to the spatial invariance in x, the response of

the half space to a wave of the form exp{i(k.x +- wt)}at the boundary is

independent of the direction of propagation of the applied wave.

Note further that, in the wavenumber range k < IkoI the magnitude of

H(k,x 3, ), and thereby the amplitude of the acoustic wave radiated into the-. 3'

half space, is independent of the variable x However, as is evident by
3

figure 4-6(a), the amplitude of the evanescent waves associated with the

wavenumber range k > lkoI decreases with increasing positive values of x

and with increasing values of k.

Note that Khen the magnitude of the wavevector that characterizes the wave

of displacement, exp(i(k.x wt)}, at the boundary is equal to Ikol, the

4 14
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A,

magnitude of H(k.,x 3 ,), and thereby the amplitude of the radiated pressure

field in the half space, becomes infinite. However, if the pressure field had

infinite amplitude at the boundary, a force of infinite amplitude would be

required to initiate any displacement of the boundary. Thus, the infinite

value of tH(k,x3 ,)l at k = Ikol is best interpreted as a statement that

the surface impedance of the acoustic half space becomes infinite at k = k01,

and thus no wave of displacement (or, more properly, velocity) characterized

by such a wavevector magnitude can be excited at the surface.

/. Figure 4-6(b) illustrates the argument, or phase, of H(k,x 3,c) as a

function of the magnitude of the wavevector characterizing the wave of

displacement, exp{i(k.x + wt)}, on the bounding surface, x3 = 0. In the

wavenumber range k < Jk0 , where acoustic propagation occurs in the x3

coordinate direction, equation (4-186) shows the phase to depend on both the

* magnitude of the wavevector of excitation, k, and the distance from the

* boundary, x3  Figure 4-6(b) illustrates the wavenumber dependency for

k 0x3 equal to 0, 0.S, and 1. For wavevectors of excitation greater, in

. magnitude, than 1k0 , the phase of H(k,x 3 ,w) is independent of k and equal

to .

lhe wavevector characteristics of H(k,k 3,w), the complete wavevector-

frequency transform of h(x - x3 t - to) defined by equation (4-170),

are difficult to illustrate in graphical form. However, they can be described

and interpreted.
.

Recall that H(k,k 3,w) is the ratio of the complex amplitudes of waves of

the form exp{i(k.x * k 3x3 +- wt)} that comprise the pressure field in the

space x > 0 to the complex amplitudes, at corresponding wavevectors (k) and

. frequencies (w), of waves of the form exp{i(k.x * wt)} that comprise the
displacement field on the boundary. We have established that a wavevector

component, k, of the displacement field produces a plane wave of pressure in

the half-space x3 > 0 when Jkl S 1k0 . The propagation of that plane wave

in x is characterized, for all x3, by the wavevector, k, and frequency, ,

of the displacement field. lhe propagation in the x3  coordinate direction,

hoever, is determined by the allowable waves (i.e., the free waves) in the

acoustic medium and the radiation condition that waves in the acoustic half

4 -5
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space must propagate in the positive x3 direction (i.e., away from the

boundary).

It is straightforward to establish, by arguments similar to those used in

section 3.3, that free waves in an infinite acoustic medium are governed, in

the wavevector-frequency domain, by

2 2 2 2 2 2 2
[k k2 + k (u/c) ]P(k,k3 ,w) = [k + k k ]P(k,k 3  ) = 0

(4-190)

For fixed values of k l k and w, it follows that the wavevector-

frequency description of allowable free waves in an infinite acoustic medium

is of the form

02 1 + - 20
P(,k 3 'c, A(k,o)S Ik 3 - k l 2 21 + B(K,w)S Ik 3 + kV1 /k j

The first term on the right-hand side corresponds to a wave propagating in the

negative x3 direction, and the second term corresponds to a wave propagating

in the positive x3 direction.

Note that, for k < Ik01 , the first term on the right-hand side of

eqUation (4-170) is of the form of the second term on the right-hand side of

equation (4-191) and therefore corresponds to a fr~e acoustic wave propagating

in the positive x direction in an infinite acoustic medium. The values of

k and w associated with this wave are dictated by the wavevector-frequency

* component of interest in the displacement field. The amplitude of this free

wave is seen, in equation (4-170), to be a function of the wavenumber and

frequency of the boundary excitation.
'a

• The acoustic half space, however, is not an infinite acoustic medium; it

is space limited in the x coordinate. Therefore, in the wavenumber range
"J3

k < Ik01, the free wave must be augmented by other wave components to

_liminate the pressure field in the space x3  < 0. The second term on the

Sr-jht hand side of th,at port ion oi equat ion ( -1 10) appI icable to the

- wivenumb ,r range k < Iko I defines these additional wave components. For a

N0
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given wavevector-frequency component of the displacement field (and thereby

given values of k and w), it is evident that the largest of these additional
2 _ 2

components occurs at k3  k 0 k .

For a wave component of the displacement field characterized by a

*wavevector and frequency such that k > 1ko[, we have established that the

resulting pressure field, on any plane of constant and positive x3,

propagates in the same direction and with the same speed as the displacement

field. However, the amplitude of this pressure wave decreases exponentially

with increasing x3. In the wavenumber range k > Ik01, equation (4-170)

defines the complex amplitudes of that combination of plane waves of the form

exp{i(k.x + k3x3 + wt)} that produces such an evanescent wave field for

each corresponding wavevector, k, and frequency, w, component of the

displacement field on the boundary. In this wavenumber range, it is easily

established from equation (4-170) that the magnitude of H(k,k3,) is

inversely proportional to k +- k32 k and is therefore largest
3 0

-i!  when the magnitude of the wavevector k - (kl,k2 ,k 3 ) is greater than, but

. in the neighborhood of, Jko0 : that is, when

k2  k 32 = k12 k 2 + k 32 1ko

While it is not obvious how the distribution of plane waves in equation

(4-1/0) produces a pressure field that decays in amplitude with increasing

positive values of x3  when k > Ikol, it should be noted that, in the

complex k3 plane, H(k,k3,w) is characterized by a simple pole on the
14

positive, imaginary k3 axis. By the Cauchy integral theorem, this pole
corresponds, under Fourier trapsformation of H on k 3, to the exponential

decay noted in H(k,x ) for positive x and to zero for negative x3.3' 3 3

lo summarize, we have presented two alternative wavevector-frequency

* descriptions of the pressure field produced in an acoustic half space by a

prescribed displacement field at the boundary. This acoustic system is space

" invariant in the two dimensional space x (xI x2), but is space limited in x3 '

One w'avvPf t.(ur fruquency desc-ription is the Fourier transform of the

" pressure field on only those variables over which the system is invariant:

4-77
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that is, the spatial vector variable x and time. In this case, the

wavevector-frequency transform of the pressure field, P(k,x 3,Pw), was shown

to be equal to the product of the corresponding transform of the displacement

field at the boundary, W(k,w), and the wavevector-frequency response of the

acoustic half space, H(k,x 3,' ). This wavevector-frequency response was

shown to be related to the spectral surface impedance, Z(k,w), and to the

corresponding wavevector-frequency transform of the Green's function,

G(k;x 3 ,0,w). The magnitude of the wavevector-frequency response (and that

of these related descriptors of the system response) was shown to be greatest,

for all x3 > 0, at those wavevectors equal, in magnitude, to the free

wavevector, k., of the acoustic medium.

The second wavevector-frequency description of the pressure field,

P(k,k3,) was formed by Fourier transformation of the space-time pressure
3'

field on all independent variables (i.e., on x, x3, and t). This transform

of the pressure field was shown to be equal to the product of the wavevector-

frequency transform of the boundary displacement field, '(k,w), and the

Fuurier tiansform of the wavevector-frequency response, H(k,x 3,w), of the

acoustic half space on the spatial variable x This complete wavevector-

frequency transform of the displacement impulse response, h(x - X, x3,t - to),

was denoted by H(kk 3 ' ) and was shown to represent the ratio of the complex

ampliludes of the plane wave components of the form exp{i(k.x #- k3x3  Wt)}

:omprising the pressure field to the complex amplitudes, at corresponding

values of k and w, of the waves of the form exp{i(k.x +- wt)} comprising the

* displacement field at the boundary. It was shown that this complete

wavevector-frequency response, H(k,k w), was characterized by discrete' - '

wavevector contributions (i.e., delta functions) on the hemisphere defined by
k2 2 2 2 2 2- k I k 2 - , k3  < 0. Further, the magnitude of

H(k,k 3,w) was shown to approach infinity when the magnitude of the

wavevector k = (k l,k2,k3 ) approached the magnitude of the free wavenumber

.-. of the acoustic medium, kO.

lhe point to be stressed is that the magnitude of the wavevector-frequency

recponse, in either the two- or three-dimensional wavevector form, of this

boundary excited, space-varying acoustic system is greatest at wavevectors

egua, in magjnitude, to that of the free wavenumber of the acoustic medium.

. . . . . .....
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Recall, from chapter 3, that the magnitude of the wavevector-frequency

response of space- and time-invariant systems was also found to be greatest at

wavevectors equal, in magnitude, to that of the free wavenumber of the system.

4.3.3.2 The Forced Vibration of a Simply Supported Plate. The free

vibration of a simply supported plate was treated in section 4.2.2 to

illustrate the wavevector-frequency properties of a free system, space limited

in two dimensions. Here, to illustrate the wavevector-frequency properties of

a forced system that is space limited in two dimensions, we investigate the

forced vibration of the simply supported plate.

In this example, the simply supported plate illustrated in figure 4-3 is

subjected to a force per unit area, f(x,t), that is considered positive when

it acts in the direction of positive displacement, w(x,t), of the plate. To

simplify temporal causality arguments, the plate is subjected to a damping

force per unit area equal to raw/at, which opposes motion of the plate. By

using the notation of section 4.2.2, the displacement field of the plate

resulting from the externally applied forcing field is governed, ovcr

0 < x1 < Ll , 0 < x2 < L and all t, by
1' 22

2
4 aw(x,t) a w( ,t)

P(x) D w(x,t) +- r at - = (x)f(x,t) , (4-192)1 a at 2  -

where B(x) is the two-dimensional space-limiting function defined by equation

(4-46). The displacement field in the space outside the physical extent of

the plate is assumed to be zero. At the boundaries of the plate, the

displacement field must satisfy the simply supported conditions specified by

equations (4-48) and (4-49).

The simply supported plate is a causal, time-invariant system, and it was

established in section 4.2.2 that the normal modes of the plate, a (x),• mn '

defined by equation (4-53) individually satisfy the simply supported boundary

conditions. We therefore assume that the displacement field can be expressed

in the form

00
W(It 2V Amn ( ( )exp(iwt) dw (4-193)

I~ -n m~ n~

0
W# 4-79
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over 0 < xI < L and 0 < x2 < L2 for all t. We also assume the forcing

field, f(x,t), can be expressed by

fIxt) = - q s 8qsB(W)qs (X)exp(iwt) dw (4-194)

q=l l

over 0 < xI < LI and 0 < x2 < L2 for all t. Substitution of equations

(4-193) and (4-194) into equation (4-192) yields

As equation (4-195) is valid for all t, it follows that

I 2. {D[(m/L 1 )2 + (n/L 2 )2]2 ir - p Amn(W)r(X)mn()

'- -o. m=l n=l

im nl

(.. 00 (x (X () -0 (4-196)

qq~l s~l

~, ~ qs -( )qs( 4 1

By multiplying equation (4-196) by au(x_) and integrating over all x, we can
use the orthogonality condition of equation (4-54) to show that

. B (M)
A (W) mn (4-197)mn 2 2 2 2

* - D[(mf/L1 ) i (ni/L 2 ) 1 - irw - pw

However, from equation (4-194) and the orthogonality condition of equation

(4 54), it can be shown that

"mn(w) (4/1 12) f(x 't)n(X)A mn(x)exp(-iwt) dx dt (4-198)

lheret ,r , by equations (4-193), (4-197), and (,I-198), 1t follows that

4 80
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w 
f z~t))00 Go-mlmn (Z)exp(-iw8)dzde

1 2  D[(mir/LL)2)2] + i2r J
o - m=l n=l12

a mn (X)exp(iwt) dw (4-199)

over 0 < x < L and 0 < x: < L for all t. Recall that w(x,t) = 0 for
I1 I1 2-2

x outside 0 < xI < L or 0 < x2 < L2 .

To obtain a single expression for the displacement field, valid over allNa

space and time, it is convenient to define the field w.(x,t) as the extension

of equation (4-199) over all space. That is,

.f.. I x t L -2 D[(mi/Ll)2 , (nf/L 22 1 r 2--

m=l n=l

a (x)exp(iwt) dw (4-200)
mn

for all x and t. The displacement field that, for all time, satisfies
equation (4-192) in the space 0 < x < tl and 0 < x2 < L the boundary

conditions of equations (4-48) and (4-49), and the requirement of zero

,' displacement for x outside 0 < xI < L1 or 0 < x2 < L2 can then be written
-. '...

w(x,t) = f3(x)w.(x,t) . (4-201)

By definition, the Green's function for the simply supported plate is a

solution to equation (4-192) when f(x,t) is an impulse in time and space.

That is, the Green's function is governed by

2
4 r. aq(xxo,tj O ) a g(Xx 0 ,t,to

)  }
3(x) D4q(x X,t t0 ) - r at 2

at2

* 3(x)6(x,xo)6(t to) (4-202)

4 -81

---. ,L



* TO 8209

To complete the specification of the Green's function, suitable spatial and

temporal constraints must be applied to the solutions to equation (4-202).

If we require that the Green's function satisfy the simply supported

conditions at the boundaries of the plate, that is,

g(O,x 2 ,xi,;t,tO) g(Llx 2 ;_o;t,t O ) = g(xl,O;xo;t,t0 ) = g(xl,L 2;o;t,to) = 0

(4-203)

and

2 a O 'x ,to) a 2g(L1 ,x2;;t,t0)

2 ax 1 2

i=.., ~gxlOxot_ O  q(xl ,L2 ;xaD;t,t O)

a=~1o;;~0  a ax2= 0 , ( 4-2041)

-ax 22 x22

then the form of the Green's function can be obtained from equations (4-200)

and (4-201) by replacing f(x,t) by 6(x,?))(t - t0 ). That form is easily

shown to be

g(xxOt -t) - fLL2  B3(i )2]2 0 mn (x2

-01. 0[(m LLL)22 2\ - X m Xl n=l 1) (n/L 2) ] + ir. p

exo{iw(t t)) dw . (4-205)

Note that, owing to the time invariance of this plate system, the Green's

function depends only on the time difference between excitation and

N observation.

With regard to temporal dependence, equations (4-200) and (4-201), and

thereby equation (4-205), assume only that the response of the system is such

that the temporal transform of the displacement field exists. However, the

SG(reen's funition must satisfy the temporal constraint that the response cannot

anticipate the input. Mathematically, this means

pK.04 82

?' -



TD 8209

av n g(x,_X4,t_ to )t - 0, for t < to  (4-206)

~~atn',

for all n. By inspection of equation (4-205), the frequency dependence of

each term in the summation is of the form

m nP 2 m n 2 _ i r / p l
~-

where wmn is the modal natural frequency defined by equation (4-55).

Equation (4-207) is of the same mathematical form as equation (3-87).

Consequently, by arguments similar to those presented in equations (3-88)-

(3-91), it can be shown that the temporal dependence of each term in the

summation of equation (4-205) is given by

fmsin{ (t to)}

Smn(t) = (l/P)U(t t0 )expf-r(t t0)/(2p)} - . . (4-208)
d mn

where dWmn is the damped modal natural frequency of the simply supported

plate, defined by

2~n (r/2p)2. (4-209)
d mn : 'mn

- It is evident that s (t) and all its temporal derivatives are identicallyw'.. mn

- zero for t < to , regardless of the values of m and n. It follows, inasmuch

as each term of the summation comprising g(xx,t - has the temporal

* dependence specified by equation (4-208), that the Green's function of
TWb

equation (4-205) satisfies the causal condition of equation (4-206).

By multiplying equation (4-205) by f(xo,t 0 ) and integrating over all

X and t it is evident, by comparing the result with equations (4-200)
0 01

and (4-201), that

* w(x,t) f q(x,xo,t toi(xo,t.) dx dt (4-210)
00a 0
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Note that this Green's function solution for the simply supported plate, a
system space limited in two dimensions, contains no line integrals

representing additional inputs associated with boundary forces. Thus, by the

arguments of section 4.3.1.2, the Green's function specified by equation

(4-205) is exact.

A note is also in order regarding the forcing function f(x,t). As used in

equations (4-198)-(4-200) and in equation (4-210), f(x,t) is a function

defined over all x and t that is equal to the force per unit area applied over

the surface of the plate in the spatial range 0 < x1 < L and 0 < x2 < L2 '

Outside this spatial range, f(x,t) can be arbitrarily specified, inasmuch as

". forces applied outside the physical extent of the plate do not affect any

displacement of the plate.

If we write

S. C 00

g(xxo,r) = (2Xr) 5 3 G(k,c,c)exp{k.x - x . 0 +- WT} dk da dw 1 (4-211)

-0 -- go

then it follows from equations (4-210) and (4-211) that the wavevector

frequency transform of the displacement field. W(k,w), is related to the

Ai devector frequency trdnsform of the forcing field, F(k,W), by

-2

W(k,w) = (2-n)- G(k-_, )F(_,w) da (4-212)

If we denote the magnitude of the wavevector k = (Mi/L 1 nr/L 2) associated-mn 11n 2

with the mn-th mode of the plate by

.. k n  i 2 2
k - I(mT/L I (nn/L2) (4-213)

and make use of the definitions of equations (4-62) and (4-40), it is

"traiqhtforward to show, from qiuation (4-205), that

2.. .. mn(4 214)
I 2 nk (.) p- i r(D/Dm ni mn p

I

',,,,
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Therefore, by equations (4-212) and (4-214), it follows that

WIkk)

W ) 1 0 I k4 1 n() Imn ()F(_,w) do, . (4-215)
2 DL L2 I I kn 4  k p w + irw/D _ -12m=l n=1l mn p -0o

If we make use of the definitions of I mn(k) and F(k,w), it is straightforward

to show that

00

I Imn(t)F(~,w) dp = 
L 2B() , (4-216)

where B (w) is the frequency-dependent modal force defined by equation
mn

(4-198). Therefore, we can rewrite equation (4-215) as

W(k,W) = 1 mn mn (4-217)
S k - k 4(w) 4- irw/D

mn=l n= mn p

Equations (4-214) and (4-217) (or (4-215)) define, respectively, the

two-wavevector-frequency response, G(k,c_, ), and the wavevector-frequency

transform, W(k,w), of the displacement field for the forced simply supported

p late.

A noteworthy feature of equations (4-214) and (4-211) is that the

description of this space-limited field in the wavevector domain does not

offer an advantage in mathematical simplicity over the description in the

spatial domain. That is, by equations (4-198)-(4-201),

"'' '',s.,~~~ - ] !-l I 4mn(W)5 (X)'mn(X)

w(x,t) - ... .. . exp(iwt) d . (4-218)00k k 4(w) + irw/IO

-. m- = n =l mn p

Comparison of equation (4-217) with equation (4-218) reveals that, while the

. transformation from the temporal domain to the frequency domain has resulted

in a mathematical simplification by elimination of an integral, both the

spatial and .avevector characteristics of the field are exp-essed as doubly

intfivVo -,ummatiuns of modal functions characteristic ot the respective

4-85
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domains. Similar arguments apply to the Green's function (see equation

(4-205)) and its wavevector-frequency transform, G(k,c,), defined by equation

(4-214). Thus, the prediction of the wavevector characteristics of the

space-limited displacement field of a simply supported plate is a mathematical

task equally difficult to that of predicting the spatial characteristics.

The mathematical complexity of the expressions for W(k,w) and G(k,c,w)

preclude us from attempting any detailed analysis of the wavevector-frequency

characteristics of the forced motion of the simply supported plate. However,

by examination of equations (4-214) and (4-217), we can identify significant

contributions to W(k,w) and G(k,c, ) and thereby gain insight into the general

nature of these wavevector-frequency descriptions.

Je first note, from equation (4-212), that G(k,c,w) defines the complex

* amplitudes of waves of the form exp{i(k.x + wt)} that comprise the displace-

* ment field of the plate as a result of excitation of the plate by the wave

(2 ) eIp{i( -,.x t)}. Similarly, equation (4-215) or (4-217) relates

the complex amplitudes, W(k,), of the waves of the form exp{i(kox + t)} that

comprise the displacement field of the plate to, respectively, the complex

amplitudes, F(cz,w), of the waves of the form exp{i( .x 4 +t)}or the

frequency-dependent modal forces, B mn(), that comprise the forcing field of

the plate.

By inspection of equations (4-214) and (4-217), it is evident that, at any

* fixed frequency, w0 the dependence of both G(k,cc,wO) and W(k,wo) on the

wavevector k is specified by a weighted superposition of wavevector transforms

of the space-limited natural modes, I (k), over all mode numbers, rn and n.
mn -

* Two separate functions weight I (k) at each value of m and n. One weighting
mn

function, the term

• {k4 k4(

kmn -k ( ) 4- irwo/DO -

specifies the response of the mn th mode of the plate at the frequency 0

lh other Aithtinq function is the frequency dFnd clt modal force,

* H v m]n on the pl,3te. In equatioln (I 214), this modal force is

f Ireqjen y independent and is given by I (a), where - is the i xed, but
mn

.%%

,I1

, 4H.b
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arbitrary, wavevector characterizing the (single) complex wave that forces the

,. motion of the plate. It is important to note that I mn(k) and the two

weighting functions are, in general, complex.

StheClearly, the relation between the wavevector-frequency characteristics of

the displacement field and those of the forcing field is not a mathematically

-simple one. However, we can gain some insight into the wavevector-frequency

characteristics of the displacement field by identifying those terms in the

summations of equations (4-124) and (4-217) that provide the largest, in

magnitude, wavevector contributions to the displacement field at some fixed,

but arbitrary, frequency w0. We will perform this identification for

W(k,w), described by equation (4-217). The general wavevector-frequency

characteristics of G(k,a,w) can then be examined as a special case of W(k,W).

* From our investigation of the free vibration of the simply supported plate

ec c In 4.2.2) , ,;e know that the magnitude of I (k) has four equal primary
mn

m"x m,ij t the v1avevectors k (4mT/L,tnf/l_ ) and has secondary maxima at the

wavevectors k = {+[m ± (2p + ])]it ,2/L,[n t (2q - I )Jr/L 2} for all

integers p and q equal to or greater than one. The magnitudes of these

secondary maxima decrease with increasing wavevector distance, c, from the

Primary maxima approximately as (IlI Ic2!) and are therefore considerably

Tj , ethan the ma3nitudes at k - (±m /ll,_tn/L 2). The reader can refresh

n m mr' r j ar4 nj the wavevector characteristics of )I mn (k)I b, -1 eferring

to iqure 1-4. It fol lows, by the above arguments, that the largest, in

majnitude, wavevector contributions to W(kw 0 ) from each mn-th term in

the summation of equation (4-215) occur at the four wavevectors

- - ( ti/[ , tnn/L) . These wavevectors associated with the primary maxima of

I (k) are referred to as the modal wavevectors, and their magnitudes, k , as-. mfr - mn

moda wavenumbers (see equation (4-213)).

By equation (4 64), it can be shown that the magnitudes of the four

,r r Imry inmima of I on(k) are equal and independent of the mode numbers m and n.

-ns,- r-,r-t,, ir(,m squation (4 1) it is evident that (1) the largest, in

,--...r, u, r n t r but ins to '(i K. 0 ) from K-h mode occur at the

'2 rnv/I ) an, ( the magn;tules of iht, i ,r;rihut ions

t (' i A t] i'd Tild f' eV to r are de t ermn ned by the ma j,' i t ud" , the

"' 4 H1

S%
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weightings applied to these modes: that is, by the magnitude of the product of
4 -I

8mn( 0 ) nd {km W)+irwo0D In the absence of specific
knowledge of the modal forces, Bmn(UO), the complete set of modal wavevectors

must be considered as sites of potentially large contributions to W_,wO).

Figure 4-7 illustrates the wavevector locations of this set of modal

wavevectors.

,  Also illustrated in figure 4-7 is a circle of radius equal to the free

wavenumber of the plate, kp(.O), at the frequency w0. A coincidence of

the magnitude of a modal wavevector, say kMN, with k defines a

resonance of the MN-th mode plate. By equation (4-71), this resonance occurs

at the frequency 0 = At resonance, the magnitude of the weighting

function that specifies the response of the mn-th mode of the plate at the
4 4'-l

frequency ,., i.e., {kmn - kp ( 0 ) + irw/} , reaches its maximum
* value. That is, at the frequency wMN where the MN-th mode is resonant, the

magnitude of the MN-th modal contribution to W(k,wN) is weighted by

IBMN( MN) IBMN(MN) (4-219)

I{kMN - k 4 (-MN ) irMN/D}i I(r MN/D)I

By contrast, the magnitude of a nonresonant (say PQ-th) modal contribution to

(k, )MN is weighted by
Q MN

. IB __Q('-°M N)

Q {kpo p ( MN) 4 irMN/Dl

Clearly, for equal magnitudes of excitation of the resonant MN-th and the

nonresonant PQ -th modes (i.e., IBMN(WMN)I = IBPQ(W MN)1I), the ratio of

the magnitude of the weighting applied to the MN-th modal contribution to

W(kwMN) to that applied to the PQ-th contribution is

I--{kp 4 k4 (W w /kp MN)

rM-/D)Ir1 (N/D20

".'- 4 88
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Figure 4-7 Wavevector Locations of Potentially Large Contributions

..- . t o t h e M a g n i t u d e o f W ( k , )

*''' lh s in figure 4- , the modes characterized by modal wavevectors on or near
".-.',the circle defining the free wavenumber of the plate (i.e., those where
°.'.-". mn = p(MN)) respond more strongly to modal forces than do those modes,..;. haracterized by modal wavevectors well inside or outside that circle. By
. . euat ion (4-220), the magnitude of the relative response of resonant to

*-- noniremnarit modes depends on both the dampinhl and the relative magnitudes of

* thlP modal ard re averiuriber' .

""." 
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Let us now examine how knowledge of the magnitudes of the maximum

wavevector contributions from the various terms in the summation of equation

(4-217) can be used to gain insight into the wavevector characteristics of

W(k ,) at a fixed, but arbitrary, frequency, w0" We assume that the plate

properties and dimensions are known and, therefore, that the modal natural

frequencies, modal wavevectors, and the damping are known quantities. We also

assume that the modal forces are known. We know, from basic vibration theory,
that the response of the plate will be greatest at the modal natural

frequencies of the plate. Therefore, the characteristics of W(k,W) at these

natural frequencies are of primary interest. Let us therefore examine the

characteristics of W(k,wMN), where wMN is the natural frequency of the MN-th

mode of the plate.

By equation (4-71) and (4-217),

0

-'" k-MN ) kmMN mn(4 -221)
ND k - k 4 i /D

m~l n=l mn MN

By our previous arguments, we know that the maximum, in magnitude, wavevector

contributions to W(k,wMN) from each term occur at the mn-th modal wavevectors,
k /-MN 4  kMN4

- (+-m/- t n /L2) Further, we know that 4 ircMN/O -

a maximum -',hen k - k or when m - M and n - N. Thus, ignoring the relativep] ~mn H
magnitudes of the modal forces, we would expect significant contributions to

W(k,uMN) at the modal wavevectors k = (tMr/L 1 ,Nn/L2). On the other hand, if

we assume that one modal force, say BpQ, is much larger than the others, we

might also expect significant contributions to W(k,wMN) at the modal wave-

vectors k = (tPTr/L 1 ,±Q r/t ) Let us first look at the relative magnitudes

of the modal contributions to W(k,wMN) at the wavevector k = (Mn/L I,NT/L2)

ihe magnitude of the contribution from the MN-th modal term is

.8 IMN(WMN) IIMN(M2/Ll Nn/L2)1
I r)M /D1

a rIl t he ma~jrn t'. jdi., uf the c n t r but ons f rom the non rpa sonan t terms are

.10

- - . L0
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1Bmn (W MN' I mn(Mff/Ll Nn/L 2 )I

Ikmn 4 kMN 4 + irwMN/DI

The largest nonresonant contributions will be those from modes adjacent to the
?'V

resonant mode and from the mode with the large modal force, the PQ-th mode.

If we assume that the closest nonresonant mode is the M-l, N-th mode, it can

be established from equations (4-63) and (4-64) that

SIM- 1 N(Mir/L L 2)1 - (2/ir) II'MN'(M'/L N/L2) (4-222)

Therefore, the ratio of the magnitude of the resonant modal contribution to

'S'S that of an adjacent, nonresonant mode is given by

VIBMN(W MN)I IkM-,N - kMN 4 + irG)MN/DI
S21IBM-1,N(W MN )IIrw MN/D I

For modal forces of comparable magnitudes, large wavevector separations

between adjacent modes, and small damping, this ratio can be large (say of the
order of 10). Conversely, for small modal separations, large damping, and

comparable modal forces, this ratio is just slightly greater than 1. If the

M-I,N-th mode were subjected to a much larger modal force than the MN-th mode,

this ratio could be less than 1.

Consider now the magnitude of the contribution from the PQ-th mode (where

the modal force is significantly larger than other modal forces) to

W(Mr/L , N/LW N ). Because we have already looked at the contributions
1' 2MN* of adjacent modes, we will assume that the PQ-th mode is somewhat removed from

the resonant MN-th mode. The magnitude of the contribution from the PQ-th

mode to W(M/L I ,NiT/L2 , M ) is given by
"S'S~2 1 'MN

(IWMN) IIpQ(Mn/L I ,Nf/L 2)I

IkpQ - kMN 4 +- irwMN/D

However, for IM-PI and IN-QI gredtcr than 2, we can show that

l pQ(P /Ll ,QI/L 2 )1 IIMN(Mi/LI,NT/L 2 )1

".I10 (M i-I'Nr/L2 )I < IM - PI IN - QI = i - PI IN QI
4-91
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Thus, the ratio of the magnitude of the resonant MN-th modal contribution to

W(Mr/LlNn/L2,c"MN) to the magnitude of the PQ-th modal contribution can

be shown to be equal to or greater than

IBMN(W MN) JIM - PI IN - Q1 k - kMN + irCMN/0I

IBPQ(WMN ) IrMN/D

Because we have assumed that IM-PI and IN-QI are both greater than 2, it

follows that, when the modal separations are sufficiently large and the

damping sufficiently small that

Ik pQ4 kMN 4  MN /D

I rwMN/Dj

the magnitude of the PQ-th modal force must be nearly two orders of magnitude

• ,greater than that of the MN-th modal force in order for the magnitude of the

*. PQ-th modal contribution to be of the order of the magnitude of the MN-th

modal contribution.

By the above arguments, it follows that, for sufficiently large modal

separations, sufficiently small damping, and modal forces that exhibit large

variations in magnitude only at modes well removed from resonance, the

magnitude of the resonant MN-th modal contribution to W(Mir/L1 ,N/L2,WMN)

is at least an order of magnitude greater than the magnitudes of each of the

other modal contributions. It is also easily verified that the phases of the

various modal contributions vary with the mode numbers m and n. Therefore, if

we envision each modal contribution as a vector, it is reasonable to argue

that the sum of one large vector (the MN-th contribution) with many small

vectors of random direction (the nonresonant modal contributions) results in a

vector nearly equal to the original large vector. By this argument, it

follows that, under the above restrictions,

IBMN( MN)l IIMN(Mn/Ll ,Nr/- 2 )(
IW(M /L 1 '/L 2,MN )I  : DIrwMN/Di (4-223)

4 92
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This estimate ; also valid at the other three wavevectors associated with the

- MN-th mode: tt L is, at k = (-MkLNr/L (M,/L --Nr/L 2 ), and

_Mr/ (-1/ 1 NrL) (M--IL/LN2)!

As we rel. the restrictions on modal separation, damping, and variations

in modal forcf , the contributions from some of the nonresonant modes

increase, and ie estimate of the magnitude of W(k,wMN) at the resonance

wavevectors b' Lhe maximum magnitude of the MN-th modal term becomes a poorer

one. Inasmuc is the magnitude of a sum is less than or equal to the sum of

the magnitude- the estimate of the magnitude of W(Mv/L I Nff/L 2 ,WM N )

under these r, ixed conditions will likely decrease from its true value.

However, for isonable relaxations of these conditions, it is likely that

W(KWMN ) will -ill exhibit relative maxima in the neighborhoods of

k = (±Mv/LI+_± /L2).

- Arguments milar to the above may be applied to estimate the magnitude of

-(k ,MNi at t modal wavevector k =(Pn/L l ,Qi/L 2 )_ associated with the

modal force t was assumed large in comparison with the others. By such

arguments, it in be demonstrated that, at k = (PI/L1,Qn/L 2 ) and = MN' the

ratio of the r ]nitude of the PQ-th modal contribution to that of the MN-th

contribution given by

IBpQ(WMNI IM - PlIN - _IrMN/0I

IBMN(WMN)I po4  k MN4 - irw MN/DI

If we again a ime values of damping and modal wavevector separations such that

""I~_4 KM4

Ik 4 k 4 + irw D
MN MN/DI
Ir MN/D-.1.0

* then, because have assumed that IM-PI and IN-QI are both greater than 2, it

follows that ratic of the magnitude of the PQ-th contribution to that of

- the MN th con bution is of the order 1B ( )I/IB (M )1. Thus,
PQ MN MN MN

.*.:.: if IB (W MN) i in order of magnitude lairger than IBMN(WMN)J, then,

• by tho jr(Jum- presented previously, the magnitude of ,,'( Pi/I ,Q./_ 2 ,wMN )

4-93
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can be approximated by

'P/,/ ) IIpQ(Pn/LIQ /L2)I IBPQ(WMN)I1 lW(P2/LIQ'/L 'MN) DjkpQ4 _ kMN4 + irw MN/DI (4-224)

It is interesting to compare this estimate with the estimate of the

magnitude of W(±Mn/LI,tNn/L 2,MN obtained previously under similar

assumptions of damping, modal separations, and relative magnitudes of modal

forces. By equations (4-223) and (4-224), we can show

--.- IW(M /LI,Nn/L 2' MN)I IBMN( MN)I pQ4  MN 4+ ir MN/DI2''QM''"M''. (4-225)
A." I W(Pff/L 1 ,A /L2 ,wM N )  IBpQ(WMN "MN/D1

For the small damping, large modal separations and relative magnitudes of

modal forces used to obtain equations (4-223) and (4-224), this ratio is of

the order of unity. Thus, we can conclude that the magnitude of W(k,W) at the

resonance frequency MN is characterized by equally large contributions at

the four wavevectors k = (±Mff/LI,±Nn/L 2 ) associated with the resonance of

the MN-th mode and at the four wavevectors k = (tPr/LI,tQn/L2 ) associated

.with the modal response of the strongly driven PQ-th mode.

lhe reader should be reminded once again that the above approximations,

and thereby the above conclusions, are strictly valid only for small damping,

large modal separations, and the ratios of modal force magnitudes used for

their derivations. However, it is likely that, under reasonable relaxations
A,., of these restrictions, the magnitude of W(k,w) at a resonance frequency MN

will be relatively large in the neighborhoods of those modal wavevectors

associated with resonances and in the neighborhoods of those modal wavevectors

associated with relatively large modal forces. Indeed, it seems reasonable to

expect that, at any frequency, the magnitude of the W(k,w) will be relatively

large in the neighborhoods of the (four) modal wavevectors associated with
-each resonant or near-resonant mode and in the neighborhoods of the modal

%A; wavevectors associated with relatively large modal forces. The exact.

AC,. wivevector locations of these relative maxima of IW(k,w)I will depend on the

relative ,eparation between the modal wavevectors, associated with the

0%4 94
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resonant and near-resonant modes and on the exact distribution of modal

forces. To the degree that such an extension of the highly specialized

example presented above is a valid one, the plot of the modal wavevectors and

the radius of the free wavenumber shown in figure 4-7 can be a useful tool for

identifying potentially large wavevector contributions to W(k,w).

As stated previously, the two-wavevector-frequency response, G(k,a,w), can

be treated as a special case of the wavevector-frequency description of the

forced displacement field, W(k,w), of the simply supported plate. That is,

G(k,a,w) is the wavevector-frequency transform of the displacement field

when the space-time forcing field is the single complex wave given by

(I/2i)exp{-i(a.x - wt)}. As can be seen, by comparison of equations (4-214)

and (4-217), the modal forces associated with this forcing field are I mn(),
independent of the frequency characterizing the forcing wave.

By applying arguments similar to those used to investigate the wavevector

behavior of J(k, ), the most significant wavevector-frequency characteristics

of G(k,aw) can be deduced. Inasmuch as the procedure used to identify these

characteristics is identical to that employed previously, we will omit the

details of this deduction process. However, the reader is encouraged to

perform such a detailed analysis to gain familiarity and confidence with this

predictive technique.

Consider first the response of the plate to the wave expf-i(Prxl/L 1

Q1T 2 /L 2 MNt)}; thus, a = (PfI/LI,Qn/L 2), one of the four modal

wavevectors of the PQ-th mode of the plate, and the natural

0' frequency of the MN-th mode. It is straightforward to show that for small

damping, large modal separations, and IP-MI and IQ-NI greater than 2, the

largest contributions to IG(k;Pn/L 1 Qir/L 2 ; MN)I occur at the four

wavevectors, k = (tMn/L I ,±NT/L2), associated with the resonant MN-th mode

and at the four wavevectors, k = (±P/LI1,±Q/L 2 ), associated with the mode

that includes the wavevector of excitation. The relative magnitudes of the

contributions at the resonant modal wavevectors and at the modal wavevectors

associated with the input depend on the exact values of the damping, the modal

-epardtion, and the differences IP-MI and IQ-NI. It should De recognized that

G(k,w) is zero in this example when x - WMN"

4-95
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It is easily shown that if the plate is forced at resonance, i.e., by

exp{-i(Mx l/L1 + Nx 2/L2 - WMNt) } ,  NG(k;Mi/L1,Ni/L2 ;WMN) I is characterized by

only four large contributions: one at each of the modal wavevectors

= (±Mff/LI,±Nir/L 2).

By extending these results to arbitrary wavevectors and frequencies of

excitation, it appears that the magnitude of G(kaw), at the frequency of

excitation, will be relatively large in the neighborhoods of the four modal

wavevectors associated with each resonant or near-resonant mode and in the

neighborhoods of those modal wavevectors that have a member close in amplitude

and direction to the wavevector characterizing the wave input to the plate.

The exact wavevector locations of these relative maxima of IG(k,,W) will

depend on the relative separation between the modal wavevectors associated

with the resonant and near-resonant modes and on the wavevector characterizing

the single wave excitation of the plate.

By the argumen's presented above, we have demonstrated two important

features of the wavevector-frequency response of the space-limited plate The

first is that the plate responds most strongly, at any given frequency, to

those wave components of the input field that are characterized by wavevectors

closest, in magnitude, to the free wavenumber of the plate. The second is

that any s;nqle ,wavevector-frequency component of excitation to the plate

produces, at the frequency of excitation, a strong response at not only those

modal wavevectors with members most nearly coinciding with the wavevector of

excitation, but also at those modal wavevectors close, in magnitude, to the

free wavenumber of the plate. These resonant components of the plate motion

* are a consequence of the reflections (or wavevector scattering) of the forced

waves at the boundaries of the plate.

4.3.3.3 Observations From Illustrative Examples. The two relatively

* simple examples of space-limited systems presented above provide ample

evidence that the analysis and interpretation of the wavevector-frequency

"haracteristics of space-limited systems is a considerably more complex task

than that of analyzing and interpreting space invariant systems in the

,a v , -rIor f rP uen(cy doma in.
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By use of these examples, we have shown that the wavevector-frequency

response of space-limited systems has two characteristics in common with the

wavevector-frequency response of space-invariant systems. The first

characteristic is that both space-limited and space-invariant systems respond

most strongly, at any frequency, to wavevector components of excitation equal,

in magnitude, to the free wavevector of the system. The second common

characteristic is that the magnitudes of the wavevector-frequency transform of

the output field of both space-limited and space-invariant systems exhibit, at

any given frequency, relative maxima in the neighborhoods of those wavevectors

characterizing relatively large inputs to the system.

However, the example of the simply supported plate illustrates a

characteristic of the wavevector-frequency response of space-limited systems

not encountered in space-invariant systems. That characteristic is wavevector

S scattering (or conversion). Recall that in space- (and time-) invariant

s .tems, a single wavevector-frequency component of input produces only a

single wavevector-frequency component of response, .'th that response

component occurring at the wavevector and frequency characterizing the input.

In the space-limited system of the simply supported plate, we found that a

single wavevector-frequency component of input produced, at any frequency, a

continuum of wavevector components in the output as a result of reflection, or

scattering, of the input ,,ave from the boundaries of the plate. The largest

(in magnitude) components in the output field occurred at the (four) modal

wavevectors associated with each resonant (or near-resonant) mode at that

frequency and at the modal wavevectors with members nearly equal to the

wavevector of excitation. The most important feature of this wavevector

* scattering is the excitation of wavevector components close, in magnitude, to

that of the free wavenumber of the plate by inputs characterized by

wavevectors far removed, in their magnitudes, from the free wavenumber.

4-97
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10 .0 CHAPTER 5

COUPLED LINEAR SYSTEMS

The spatially distributed, time-invariant linear systems treated in the

previous two chapters have consisted of a single physical component, such as a

string, a plate, or an acoustic fluid. However, in such specialized fields as

structural acoustics, musical acoustics, architectural acoustics, and noise,

the systems of practical interest are comprised of multiple interacting

physical components. This chapter addresses the response of spatially

distributed, time-invariant linear systems comprised of more than one physical

component.

5.1 FUNDAMENTAL CONCEPTS OF COUPLED SYSTEMS
:2:

In section 3.1 of chapter 3, we defined a system as "an aggregation or

assemblage of interacting elements combined by man or nature to form an

integral entity." In a spatially distributed system comprised of a single

physical component, the "interacting elements" of the system are differential

lengths, areas, or volumes (as appropriate) of the physical component under

scrutiny. For a spatially distributed system comprised of multiple

interacting physical components, the "interacting elements" of the composite

system are the individual physical components of the system. Thus, we see

that for a spatially distributed single component system, the elements of the

system are of microscopic spatial scale, whereas for a spatially distributed

multicomponent system, the elements of the composite system are of macroscopic

%- scale. This difference in spatial scale, though initially somewhat confusing,

is simply a consequence of defining a system in terms of "interacting

elements."

:0

. lhe macroscopic spatial scale of the elements of a system comprised of

multiple physical components does present a dilemma. It has been

- dmonstrated, by the illustrative examples of the preceding chapters, that the

-patial scale of the interacting elements of a system corresponds to the

5 -1
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,% spata" ldetail to which the system and its response can be described.

Furte, 'j lefinition, the wavevector-frequency description of the response

of a eQuires knowledge of the system response over all space and

time. ear'y then, the macroscopic spatial scales associated with theA
various physical components of a multicomponent system are not compatible with

a waveve-tor-frequency description of that system.

The solution to this dilemma is really quite simple. We define each

physical component (or interacting element) of the multicomponent system to be

a subsystem. Each subsystem is now a single component system and is comprised

of elements having spatial scale; of differential order. The various

subsystems are then coupled in accordance with the interactions between the

various physical components (or macroscopic elements) of the composite system.

* By these arguments, a spatially distributed system comprised of several

- (say N) interacting physical components can be interpreted as an asomhlage of

N-coupled subsystems, where each subsystem represents a single physical

component of the composite system, and the couplings between the subsystems

are chosen to reflect the appropriate interactions between the physical

components of the composite system. The title of this chapter, Coupled Linear

Systems, was chosen to reflect this interpretation of, and approach to,

spatially distributed, time-invariant multicomponent linear systems.

5.1.1 The Causes and Effects of Coupling

Consider a system comprised of several interacting physical components.

For an interaction to exist between any two of the various physical

components, those components must be either in physical contact, physically

connected through one or more of the other components of the system, or

subject to some physical field that induces mutual forces between the two

components. In the interpretation of a multicomponent system as an assemblage

of coupled single component subsystems, the interactions between the various

rh,/;ical components of the composite system define the couplings between the

i iuub ystems. lhe specific nature of the coupling between any two

'ubsstems can be determined only by examining the physics of the particular

interiction between the corresponding components of the composite system.

% % %%.
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However, certain characteristics of the coupling between subsystems and, in

some cases, of the physical subsystems themselves can be deduced from the

specific form of the interaction between them.

Consider the situation in which the interaction between two components of

the composite system results from physical contact between the components.

The line or surface of physical contact between the two components establishes

a spatial boundary common to both components. It therefore follows that the

coupling between the physical subsystems corresponding to these components

occurs at the boundaries of the subsystems. It further follows that the

physical subsystems corresponding to these components are space limited.

Arguments similar to the above apply when the interaction between two

components of a composite system results from an interconnection of these

* components via one or more of the other components of the composite system.

Ihat is, the lines or surfaces of physical contact between the components of

interest and th3 interconnecting component(s) establish spatial boundaries for

both components of interest, thereby spatially limiting the corresponding

physical subsystems. In addition, the coupling between .these physical

subsystems acts at these boundaries.

Iwo components of a composite system can interact through the presence of

some field of physical origin (an electromagnetic field, for example) between

the components. Such fields can produce interactive forces between components

at the atomic or molecular level in the absence of any physical contact

*, between the components. It follows that, in the presence of such interactions

between components, the coupling between the associated physical subsystems

acts not only at the boundaries of the subsystems, but can act between any of

the (differential scale) elements of the two subsystems. All physical

subsystems associated with a multicomponent system are, of course, space

limited inasmuch as two components cannot simultaneously occupy all of space.

5.1.2 Classificat 4 on of Coupled Svstems

From the above discussion, it would appear that, inasmuch as each of the

various ohsical subsystems associated with a given multicomponent system is

5-3
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[0 X1 f (x,t

Figure 5-1. Geometry of Fluid-Loaded Plate

plate and fluid are in contact at the top surface of the plate, the

displacement field of the plate is imposed on the fluid at this boundary,

thereby exciting a pressure field, p(x,x 3,t), in the acoustic half space.

lhis pressure field, acting on the top surface of the plate, produces an
additional input field, p(x,O,t), to the plate that acts opposite in direction

to the external input, f(x,t). We have assumed here that, with respect to the

acoustic half space, the plate is of infinitesimal thickness. Further, we

have applied the law of conservation of mass (or continuity), which requires

that the displacement field of the plate and the component of the displacement
0

field of the fluid normal to the plane of the plate be equal at the plate-

fluid interface (x 3  = 0).

By means of the above arguments and figure 5-2, we can completely specify

. the subsystems associated with the infinite plate and the acoustic half-space

components of the composite plate-fluid system and the coupling between them.

" The elements of the infinite plate subsystem are subjected to two inputs: the

- externally imposed input, f(x,t), and the oppositely directed pressure field,
_. p(x,O,t), that is induced in the acoustic half space and acts on the upper

.-
5-7
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COMPOSITE PLATE - FLUID SYSTEM

f(x,t)

INFINITE w(x t)
PLATE

p(x,0,t0

N~ w(x,t 0

ACOUSTIC
HALF SPACE

Figure 5-2. Schematic Diagram of the Fluid-Loaded
Infinite Plate System

surface of the plate. The only output of consequence from the infinite plate

is the vibratory displacement field of the plate, w(x,t). With the exception

C-, of the additional input of the pressure field from the half space, the

infinite plate subsystem is identical to the infinite plate system treated in

chapter 3 as an illustrative example of a forced, linear, space- and time

invariant system.

Contrary to the impression conveyed by figure 5-2, no inputs (or sources):-/
are applied to all elements of the acoustic half space. Rather, the

connection of the output of the infinite plate subsystem to the acoustic

half-space subsystem in figure 5-2 indicates that the half-space subsystem is

C' coupled to the infinite plate subsystem via the displacement field of the

plate. In this coupling, the displacement of each element of the plate

(measured normal to the plane of the plate) is imposed on the contacting

element of the acoustic half space over the planar boundary of the half space,

.3  0, prescribed by the plate. The pressure field in the half space

results solely from this imposition of the displacement field of the plate on

the bournddry of the half space. The quantity of interest, or output, from the

4% "
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acoustic half-space subsystem is the acoustic pressure field over the planar

surface, x= 0, that defines the plate-fluid interface. The subsystem

associated with the acoustic fluid component of the composite plate-fluid

system is a special case of the linear, time-invariant, space-limited

acoustic half-space system treated in section 4.3.3.1 of chapter 4.

In identifying the subsystem associated with the acoustic fluid as a

special case of the space-limited acoustic half-space system treated in

section 4.3.3.1, the words "special case" must be emphasized. The system

treated in section 4.3.3.1 was that of the pressure field produced in the

acoustic half-space x3 > 0 as a result of a prescribed displacement field

applied to the boundary of the half space at x3 = 0. This system was shown

to be space invariant in the x and x2 coordinate directions but, owing to

the boundary at x3 = 0, space limited in the x3 coordinate direction.

* Conseque'ntly, this acoustic half-space system was classified as a space-

limited system. The subsystem associated with the acoustic fluid component of

the composite plate-fluid system is a special case of the half space system

treated in section 4.3.3.1, because the output of tnis subsystem is the

pressure field over the two-dimensional surface defined by x3 = 0, a subset

of the three-dimensional half-space x3 > 0. However, inasmuch as the

pressure field over the plane x3 = 0 (or, for that matter, any plane of

constdnt x 3) is independent of x3, it is space invariant. Consequently,

as can be demonstrated by comparison of the mathematical forms of the

input-output relationships of equations (4-159) (at x = 0) and (3-59), the

subsystem associated with the acoustic fluid component of the composite

plate-fluid system is space invariant.

By the use of figure 5-2 and the above arguments, we have defined the

coupled plate and acoustic fluid subsystems that will be used to mathe-

matically model the composite system of the fluid-loaded plate. Both

subsystems have been argued to be linear, time invariant, and space

invariant. It therefore follows that the mathematical model of the composite

- . plate-fluid system is also linear, time invariant, and space invariant.

By reference to figure 5 2, it is evident that the plate and acoustic

fluid subsystems are mutually coupled. That is, the acoustic fluid subsystem

,.'" 5-9
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is coupled to the plate subsystem through the common displacement field at the

interface of these two systems. In addition, the plate subsystem is coupled

to the acoustic fluid subsystem by means of the pressure field exerted, by the

fluid, en the upper surface of the plate. Because of this mutual coupling,

the composite plate-fluid system is a form of feedback system. That is, the

output of the composite system (the displacement field of the plate) is fed

back through the acoustic fluid subsystem to produce a pressure field that

augments the input to the composite system, f(x,t), in exciting the infinite

plate subsystem.

Recall (see figure 5-2) that the input to the composite plate-fluid system

described above is the force per unit area, f(x,t), applied to the infinite

plate subsystem and the output was defined to be the displacement field of the

plate, w(x,t). If we redefine the output of the composite system to be the

[ pressure field, p(x,x3,t), throughout the acoustic half-space x3 > 0

rather than the displarement field of the plate, we specify a new composite

s1stem that has the same physical elements (or components) and the same

interactions between components as the composite system used to predict the

displacement field. The redefinition of the output, therefore, has no effect

on the definition of the interacting elements of the two subsystems associated

with the plate and acoustic fluid components of the composite system.

lo complete the specification of the coupled subsystems associated with

this new composite system, we again trace the sequence of physical processes

occurring subsequent to the excitation of the plate to define the inputs,

outputs, and couplings associated with these subsystems. A schematic diagram

of these processes is shown in figure 5-3.

A comparison of figures 5-2 and 5-3 reveals that the primary difference

between the coupled subsystems that define the mathematical model for the
displacement of the plate and those that define the mathematical model for the

pressure field in the half space is the subsystem associated with the acoustic

half space. As shown in figure 5-3, the output of the acoustic half-space

subsystem is the pressure field over the entire half space. This output, in

addition to being defined as the output of the composite plate-fluid system,

i,, spati,jllj filtered such that the pressure field at the surace of the plate

5 10
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%, COMPOSITE PLATE - FLUID SYSTEM

fix , t)

INFINITE
PLATE" ' , , wP p(x,0, 0)

I x3 =0 w(x,t)

P- (X 3ACOUSTIC

p.x ,- HALF SPACE

p(x x3, t)

Figure 5-3. Schematic Systems Diagram for the Pressure Field
- Produced by the Forced Vibration of an Infinite Flat Plate

(i.e., at x3  0 0) acts as an additional input to the plate. For the coupled

System shown in figure 5-2, this spatial filtering was incorporated in the

acoustic half-space subsystem so that the output of that subsystem was the

pressure field at the surface of the plate, p(x,O,t).

By the above arguments, it is evident that the redefinition of the output

of the composite plate-fluid system from the displacement field of the plate

to the pressure field over the entire acoustic half space requires a

redefinition of the acoustic half-space subsystem, but not of the infinite

plate subsystem or the couplings between the subsystems. This redefined

-acoustic half-space subsystem is exactly that linear, time-invariant,

'space limited,acoustic half-space system treated in section 4.3.3.1 of

" chapter 4. Inasmuch as one of the two coupled subsystems that forms the basis

of the mathematictl model for the pressure field produced by the forced

2-'
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vibration of an infinite, flat plate is space varying, it follows that the

redefined composite system is space varying.

- The above examples demonstrate that changing the definition of the output

from a specific assemblage of interacting physical components can effect a

change in (1) the specification and classification of one or more of the

single component subsystems used to mathematically model the multicomponent

system and (2) the classification of the multicomponent system itself.

.i ~5.2 THE FREE RESPONSE OF COUPLED SYSTEMS

By definition, the free response of a multicomponent system is the

self-sustained output of that system in the absence of any externally applied

.1-, input. Recall that, in the absence of any input to the system, the initiation

of the output field of the system cannot be addressed but, given certain

knov, edge of the output at any specific time, the output can be determined for
, -,,, ll tine.

Because the mathematical model of a multicomponent system is formulated by

interpreting that composite system as an assemblage of coupled subsystems, the

.. . determination of the free response of the composite system is equivalent to

dete-mining the frep response of the corresponding assemblage of coupled

subsjstems. The title of this section emphasizes this equivalence.

In this section, we demonstrate, by example, the procedure for formulating

a rnathematical model of, and obtaining a solution for, the free response of a

multicomponent system. The multicomponent system addressed in this

illustrative example is the displacement field of a free infinite plate

subjected tc fluid loading on one side. By comparing the free displacement

field of the fluid-loaded plate to that of the plate in vacuo, we also examine

the effects of the fluid loading on the free waves of the plate.

5.2.1. The Free Response of an Infinite _Plate With Fluid Loading on One Side

ShP phyr ira I ;ystcm 3nd the Korrerponding ,,semblage of coupled subsystems

i 7,o idt d 'i th the t orred v ibr,ilt ur of a thin, infinite, i at olate with an

--. . . . . . .--.- . . . . .
.......--.5N12
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acoustic fluid on one side and a vacuum on the other were presented and

discussed in section 5.1.3. The physical system of interest in this section

is the response of that same plate, fluid loaded on one side, in the absence

of the externally applied forcing field, f(x,t). Thus, it follows that a

mathematical model for the free displacement field of this fluid-loaded plate

can be formulated from that assemblage of coupled subsystems illustrated in

figure 5-2 with the forcing function, f(xt), set equal to zero.

By reference to figure 5-2, it is evident that, in the absence of an

externally applied forcing field, the infinite plate subsystem represents the

displacement field of the plate forced by the pressure field, p(x,O,t),

applied to the upper surface of the plate. The resulting displacement field

of the plate is the output of the composite plate fluid system, as well as

that of the infinite plate subsystem. The forced response of a damped,

I •infinite plate is treated in section 3.4.6. However, recall from section 3.3

thjt the outputs of free systems having losses cannot he described in the

'. J,;tr rr , J domain. To circum,,ent this difficulty, ' .e ascume the

plate to be undamped. With this assumption and the recollection that the

pressure field p(x,0,t) is applied in the negative x3 direction, it follows

from equat'lon (3-103) that the displacement field output from the infinite

plate subsystem is governed by

4l a 2w(xt)i DV w(x ,t) .... =-px 0 ,t) (5-1)

at
2

for all x and t. Recall that 0 denotes the flexural rigidity of the plate and

represents the mass per unit area Gf the plate. In this text. our interest

is confined to those displacement and pressure fields that can be expressed in

the forms

* w(xt) = (2T) -3 W(k,,)exp{i(k.x + wt)} dk dw (5-2)

p(xOt) (2n)-3 P(kO )exp{i(k.x +wt)) dk dw (5-3)

5 13
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By usiiq equations (5-2) and (5-3) in equation (5-1) and by recalling that

equation (5-1) applies for all x and t, it follows that the wavevector-

frequency descriptions of the input and output fields of the infinite plate

subsystem are related by

-' -P(k,O, )

W(k, ) {Dk 4 _u 2} (5-4)

where k =k I + k22 This relationship has the mathematical
form shown, in equation (3-59), to be characteristic of space and

time-invariant linear systems. Thus, we conclude that the infinite plate

subsystem is space and time invariant.

*._ As was stated in section 5.1.3, the subsystem associated with the acoustic

fluid iV a -PeLlal case of the space-limited acoustic half space system

'Le in ' e ct o *I.3.3.l1 . B y r e fer e nce t o P qua in s a~ i r. ad ( )o

section 4.3.3.1, it is evident that the output, p(x,O,t), of the acoustic

half-space subsystem is governed by

2 2
2 x'x 3 't) 1 x'x 3 't)3' 2 2 2 x >0, (5-5)

ax 3 c at

,.. .. ,a ri d

2
ap(x,O,t) a w(xt)ax =,. - -  -- ... ( 5-6)"0 ax....3  at2

for all x and t. Here, V2 denotes the two-dimensional Laplacian operator,

- p and c are the respective density and spepd of sound in the fluid, and w(?x,t)

is the displacemunt uf the fluid at the boundary x = 0 in the direction

normal to that boudjry,. Recall, however, from section 5.1.3, that the normal

,, .- .j ir ,ment of the fluid at x 0 is imposed by the displacement of the
a ' Rta , further, thit the pressure field in the half space must

- tAIy the Lunality conditiun that the pressure iust Either propagate away,

%°"%
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or decay with increasing distance, from the source of excitation of the

pressure field: that is, the boundary common to the plate and fluid at

x3 = 0.

It is interesting to note, from equations (5-5) and (5-6), that to obtain

a solution for the pressure field at x3 = 0, one must first obtain a

solution for the pressure throughout the entire half space inasmuch as the

-1k boundary condition (equation (5-6)) requires knowledge of the gradient of the

pressure normal to the boundary.

The solution to equations (5-5) and (5-6), subject to the causality

condition, were developed in section 4.3.3.1. By use of equation (4-159), it

is straightforward to show that the wavevector-frequency description of the

output field, P(k,O,w), of the subsystem associated with the acoustic fluid is

* related to the wavevector-frequency description of the displacement field of

the oIate, , imposed at the boundary of the fluid by

2
ipw W(k')

k <Ikoj
2 2k0  l -k/k 0

,'.--P(k,O,w) =(5-7)

, -p 2 W(k,W)

2 2 k > Ik0 1
0I

where it will be recalled that k = w/c. By reference to section 3.4.3, it
0

can be verified that the input-output relationship described by equation (5-7)

has a mathematical form consistent with that of a space- and time-invariant

system.

The coupled set of equations (5-4) and (5-7) form the mathematical model,

in the .wavevector-frequency domain, for the displacement field of the free,

infinite plate subjected to fluid loading on one side. By substituting

elquation (5-1) intn e quation (5-4), it is easily verified that the

,v' v tor frequency description of the displacement field of this

: - 1i.1 pI.jt e is joverrned by

5-15
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.2
Dk W(k,) -- 0 k < Ikol , (5-8)

Sko lk 02

and

t k
4  

-k 2 - 21 0 , k > Ikol (5-9)
2

By these equations, it is evident that unless

",4"2 . 2
Dk 4- 2 0 1 0 , k < 1k0  , (5-10)

k' " 1 k2 /k02

W(k,w) is zero over the wavevector range k < Ik o, and unless

D 4  2 P
Dk4 , f- k 0 k > Ik , (5-11)

I2
W(k,w) is zero over the wavevector range k > Ik01

In equations (5-2) and (5-3), the components kI  and k2  of the

wavevector k and the frequency w are restricted to be real. lhus, we seek

only those solutions to equations (5-10) and (5-1i) for which both k and W are

real. With this restriction, it is evident that equation (5-10) is satisfied

* only if k 0. This solution represents a static, rigid body displacement

rither than a vibratory motion of the plate and can therefore be ignored. We

thus conclude that equation (5-10) has no solutions of consequence to the

dynamic motion of the plate in the real wavevector domain k < 1k0 , and

therefore

W(k,,) 0 , k < jkoI (5-12)

I et us now seek the solutions of equat ion (5 -1 ) for real values of W and

k io accornpl ish thi , we recal I that the symbol %/ denotes the positive

-p
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square root of a positive number, and we define the real, positive parameter

22
s = k2 - ko, k > Ikol (5-13)

By using equation (5-13) and by recalling that k = w/c, we can rewrite

- equation (5-11) in the form of the following cubic equation in s:

-__ k s - 2 = 0. (5-14)S I
Inasmuch as s is defined to be real and positive, we seek the real, positive

roots of equation (5-14). It is well known that a cubic equation with real

coefficients has either three real roots or one real root and two conjugate
complex roots. It is also knownthat if si  and s denote the

roots of equation (5-14), then

and

s + s + s = -P/P • (5-16)

by equations (5-15) and (5-16), it is easily deduced that there is only one

real, positive root of equation (5-14). If we denote that real, positive root

by s1 (k), it follows from equation (5-13) that the corresponding (and only)

real roots of equation (5-11) are given by

r:',':: +c /k 2  
- 2 ( )( -7

l =  - S1  (k) = (k) (5-17)

lhus, it is evident that equation (5-11) has two real roots in , equal in

0 mdgnitude and opposite in sign.

It is convenient to use equation (2-14) to define the phase speed, c

a3, oriated .itn w (k) at any wavevector k as

c '(k) = I~l (k)l/Ikt Iwl(k)l/k (5-18)

5-17
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and then to rewrite equation (5-17) as

= ±kc '(k) (5-19)

The phase speed c '(k) represents the speed of propagation of the free wavesP
in the fluid-loaded infinite plate as a function of the magnitude of the

wavevector characterizing that wave. By substitution of equation (5-19) into

equation (5-11), it can be shown that the phase speed, c '(k), is theNp
positive, real root of

12

Dk2 _ Vc2 - -= 0 , c 2 > c 2 (5-20)
p 2 .2

k C -c p

By the above arguments, we have established that equation (5-11) has only

two real roots in w. It can further be shown, by equations (5-13), (5-15),

and (5-16), that equation (5-11) also has four other complex roots that occur

in conjugate pairs. If we denote the product of the factors of equation

(5-i) associated with these complex roots by Q(k,w), then it follows, by use

of equations (5-17) and (5-19), that equation (5-11) can be rewritten in t*e

form

2"."2 2 2(2
Dk 4  2 2 _ k 2c 2)Q(k,w) - 0 k > IkoI (5-21)

k 2  ko

Consequently, equation (5-9) can be written

- k 2c 2 )Q(k,w)W(K,w) 0 k > Ikol (5-22)

To obtain a solution of equation (5-22) for W(k,w), we argue as follows.

By use of equation (2-50) and the arguments presented in section 3.3.1, it can

'I be shown that

Q(k,w)W(k, ) : A(k)6(w - kc ') B(k)6(u kc ') , k > Iko ,1 (5-23)p -p

where A(k) and B(k) are unspecif i ,d functions of the wavevector k. Therefore,

it follows that

5 18
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A(k) B(k)W() (k) ( - kc ') ,( kcp') k > Ikol (5-24)SW'?" - )p' -I-Q(k,w) p '

However, by making use of the sampling property of the Dirac delta function

and recalling that c ' is a function of k, we can write

A(k)/Q(k,w)}S(w- kc ') = {A(k)/Q(k,kcp')}6(w - kc ') = (k)6(( - kc ')

(5-25)

and

{B(k)/Q(k,.)}6(w + kc ') = {B(k)/Q(k,-kc ')}6(w + kc ') = ((k)s(w + kcp'

(5-26)

Consequently,

W(k,w) = (k)6(u - kc ') + (3(k)cS(w + kc ') , k > Ik I , (5-27)

where c(k) and 3(k) are, as yet, unspecified functions of the wavevector k.

By equations (5-12) and (5-27), we can conclude that the wavevector-
frequency description of the displacement field of the fluid-loaded, infinite

plate has the mathematical form

W(k,J) = (k)6( - kc ') i B(k)S(. - kc ') (5-28)

for all k and w. The unspecified functions a(k) and (3(k) are determined by

the initial conditions of the plate motion.

As we did in the case of the in-vacuo infinite plate, let us specify the

initial displacement and velocity fields of the plate to be
w'/-

S w(xO) w (x) (5-29)"S.-.. - o

and

Saw (x,0)
v (X) (5-30)

5-19
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% .By use of equations (5-2), (5-28), (5-29), and (5-30), it is a simple matter

to show that

W(k,W) = IrW0(k){6(w - kc ') + 6(w + kc ')}

Vo(k)
+ ikc '(k) { ( - kcp ) - 6(c + kcp )} (5-31)

for all k and u), where W0 (k) and V0 (k) are the respective spatial Fourier

transforms of w0 (X) and vo(X).

It is instructive to compare the wavevector-frequency descriptiur of the

displacement field of the freely vibrating infinite plate with fluid loading

on one side, given by equation (5-31), with the corresponding description of

the free vibration of the infinite plate in vacuo, given by equation (3-31).

By use of equations (2-15) and (3-23), it is straightforward to show that the

phase speed, c, of the in-vacuo plate can be expressed as

pp• Cp(k) z= k l ./ (5-32)

Consequently, from equation (3-31), the wavevector-frequency description of

the displacement field of the freely vibrating infinite plate in vacuo can be

written in the form

W(k,w) = nWo(k){6(w - kc ) + S(w + kcp)} + ikc (k) w - kc ) 6( + kC
p kp~ p kc)

(5-33)

Comparison of equations (5-31) and (5-33) reveals that the wavevector-

frequency descriptions of the free vibration of the infinite, fluid-loaded

plate and the infinite plate in vacuo differ only in the propagation speeds of

the respective free waves. Therefore, the physical interpretation of equation

'-.-." (3-31) given in section 3.3.2 can be directly applied to equation (5-31) by

properly accounting for this difference in phase speeds.

Inasmuch as the phase speed of a free wave in an infinite fluid-loaded

. plate differs from that in an infinite plate in vacuo, it follows that the

5 -20
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free wavenumber associated with the fluid-loaded plate must differ from that

of the in-vacuo plate. Recall that the free wavenumber is defined as the

magnitude of a wavevector associated with a free wave. If we denote a free

wavenumber of the fluid-loaded plate by k ' then it follows from equation

(5-19) that

k 'G() = IWI/c . (5-34)

By equations (5-19), (5-20), and (5-34), the free wavenumber of the

fluid-loaded plate is the real, positive root of

Okp4 - 2 - = 0, kI>Iki (5-35)pk ,2 k02 p 0

- p 0

.. In section 3..2, we showed the free wavenumber of the in-vacuo infinite

plate, k , to be given by

kp = .

In contrast to equation (5-36), equation (5-35) is of such complexity that a

* solution for kp' can only be obtained by numerical techniques- However, by

use of equation (5-36) and the mathematical form of equation (5-35), we can

deduce that (1) k p' must exceed k p for all w and (2) the fluid parameters

appear in a term consistent, in form, with an additional mass, or inertial

force. Thus, we conclude that the fluid loading acts as an additional mass to

the plate, thereby (in accordance with equation (5-36)) increasing the free

wavenumber of the plate.

To provide a quantitative example of the effect of fluid loading on the

free wavenumber of a plate, figure 5-4 presents a comparison of the free

wavenumber (k ') of an infinite 2.54-cm-thick steel plate with water loadingP
on one side with the free wavenumber (k p) of the same plate in vacuo over

• the trequency range 0 to 12 kilohertz (kHz). Also included in this figure,

for reference purposes, is the acoustic wavenumber (k) of the water.

00 1s . . . - 5 - 2 1
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s Figure 5-4. Comparison of In-Vacuo and Water-Loaded (One Side)
Free Wavenumber of an Infinite 2.54-cm-Thick Steel Plate

Figure 5-4 shows that, in the frequency range where k is greater than
p

ko, the free wavenumber of the water-loaded plate is about 6 percent greater
than that of the plate in vacuo. In the frequency range where k is less

pthan k the free wavenumber of the water-loaded plate asymptotically
0'

approaches k and the ratio of k to k increases with increasing0' p p
frequency. Note that, as required by equation (5-35), kp exceeds k0  at

all frequencies.
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Because the character of k ' is similar to that of k at frequenciesp p
where kp > k0 and similar to k0 at frequencies where kp < kO, the

frequency at which kp = k0 is given the special name "coincidence

frequency" and is denoted by f c By equation (5-36) and the definition of
kO, it is easilv shown that the coincidence frequency is given by

2
fc / (5-37)

For the example shown in figure 5-4, the coincidence frequency is about

9.4 kHz.

I2
Junger and Feit 2 show that an "extremely accurate" approximation to

k ' can be obtained at frequencies below the coincidence frequency byp
replacing the k ' under the radical in equation (5-35) by the freep
wavenumber of the in-vacuo infinite plate, k . With this substitution, wep
obtain the following approxi,-ion for the free wavenumber of the infinite

plate, fluid loaded on one side:

kP M(m k 1 4 f f< f (5-38)

p k02

Figure 5-5 compares the free wavenumber computed from equation (5-35) with the

approximate value obtained by equation (5-38) for the same 2.54-cm-thick steel

,. plate, water loaded on one side, that was characterized in figure 5-4. As is

evident from figure 5-5, equation (5-38) provides an excellent approximation

to the free wavenumber of the fluid-loaded plate over the frequency range

f<0.8f
-C

By applying similar arguments to equation (5-20), it would seem reasonable

that a good approximation to c '(k) can be obtained, over the wavenumber

0 range where c (k) c, by replacing the c ' under the square root by the

phase speed of the in-vacuo plate, c By making this substitution and
p

*using equation (5-32), we obtain

Cp (k) c (k)/ 11 ., k < k (5-39)

pk c2 -c (k)

p

5-23
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Figure 5-5. Comparison of Exact and Approximate Values
,N of the Free Wavenumber of an Infinite 2.54-cm-Thick Steel Plate,

, ' Fluid Loaded on One side

55-

SHere, k denotes the critical wavenumber, defined as that wavenumber at'' c

"';: which cp(k) =c and, by equation (5-32), given as

• k =c i- -I'D. (5-40)

Figuregares te Cpharsod of Ethe f a A oxmated from

w"-.. equation (5-20) with the approximate value computed from equation (5-39) for

othe 2.54-cmthick infinite steel plate with water loading on one side. Here

1 '.

wch c (s c a qation (5-32), gve a

* =c'
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Figure 5-6. Comparison of Exact and Approximate Values of the
Propagation Speed of the Free Wave in an Infinite 2.54-cm-Thick

Steel Plate, Fluid Loaded on One Side

of the phase speed at wavenumbers less than 80 percent of the critical

wavenumber.

-.'

As a final observation, it is easily shown, by equations (5-2) and (5-33),

that the space-time description of the free vibration of the fluid-loaded

* infinite plate is given by

-2-iiiVo(k)

00

21)f o iV0 (K) kclk (~]

+W(K) +kc 0(k) expfi[ k.x - ( dk (5-41)
-iP (k)

for al) x and t. However, owing to the dependence of c ' on k, no further
p

simplification of equation (5-41) is possible without specification of W0(k)

and V0 (k).
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5.3 THE FORCED RESPONSE OF COUPLED SYSTEMS

Different multicomponent systems consist of different assemblages of

physical components with different interactions between components and

different inputs. By the arguments of section 5.1, such different

multicomponent systems can be interpreted as different combinations of single

component subsystems with different couplings between, and inputs to, the

various subsystems. These coupled systems form the basis for the mathematical

models of the corresponding multicomponent systems. Recall that although all

systems (or subsystems) treated here are linear and time invariant, they can

be either space varying or space invariant, as appropriate. By the arguments

of chapters 3 and 4, it follows that the mathematical models of different

multicomponent systems consist of different combinations of simultaneous,

linear, homogeneous or inhomogeneous partial differential equations with

* different coupling conditions between equations. The coefficients of the

various differential equations are time invariant, but may be either space

invariant or space varying, as appropriate.
-N

Clearly, by the above discussion, it is impractical to attempt to develop

a general input-output relationship applicable to all multicomponent, or

coupled, systems. Rather, the emphasis in this section will be to

% demonstrate, by example, techniques for formulating and solving mathematical

models for the forced response of coupled systems. In the subsections to

follow, we will address the forced response of two multicomponent systems:

(1) the infinite plate subjected to fluid loading on one side and (2) the

finite, simply supported plate subjected to fluid loading on one side. The

forced response of these systems can then be compared with the forced response

of the corresponding plates in vacuo to determine the effects of fluid loading

on the forced response of infinite and finite plates.

5.3.1 The Forced Response of an Infinite Plate With Fluid Loadingon One Side

lhis illustrative example is the forced version of the coupled system

described and discussed in section 5.1.3. The geometry of the physical system

i,, illustrated in figure 5-1, and the schematir diagram of the corresponding

c-"- a iemblage of coupled subsystems is illustrated in figure 5-2.
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Let us first consider the subsystem associated with the infinite plate.

By reference to figures 5-I and 5-2, it is evident that the plate is subjected

to two forcing fields: (1) the externally applied input, f(x.,t), and (2) the

oppositely directed pressure field, p(x,O,t), acting over the upper surface of

the plate. The output of this subsystem, the displacement field, w(x,t), of

the plate, is also the output of the composite plate-fluid system. By

equation (3-103), the response of an infinite plate (having flexural rigidity

0, mass per unit area v, and viscous damping per unit area r) to the forcing

fields f(x,t) and -p(x,O,t) is governed by

2DVwxt aw(x,t) awx t)
w(xt) + r 2 =-f(x t) - p(x,Ot) (5-42)

at at2

over all x and t.

Note that, for the treatment of the forced response of this composite

system, ,e have assumed the plate to be damped, ,hereas in our tre,tinent o

" the free response of the same composite system, the plate was assumed (for

reasons explained in section 5.2.1) to be undamped. The reason for including

damping in the model for the forced response of the plate subsystem is that

its presence, as explained and illustrated in sections 3.4.4 and 3.4.5,

.mp~lie. causality arquments and permits unambiguous definition of the

sabsyst:m response over all wavevectors and frequencies.

By assuming that w(x,t) and p(x,O,t) exist in the forms of equations (5-2)

and (5-3), respectively, and that f(x,t) can be expressed as

-3

f(x,t) = (2,) -3  J F(k w)exp{i(k.x i wt)} dk dcj (5-43)

it is straightforward to show, from equation (5-42), that the wavevector-

frequency descriptions of the input and output fields of the infinite plate

-suhstm are related by

6 F(kw) P(k,O,, )

D k , ) .. . . . ( 5 4 4 )
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2 k2
where k l k This input-output relation has the mathematical

form characteristic of a space- and time-invariant linear system.

J. N By inspection of figure 5-2, it is evident that, inasmuch as the input to

the coupled plate-fluid system is applied to the plate, the subsystem

associated with the acoustic fluid is the same for both the forced and free

versions of the composite plate-fluid system. This acoustic half-space

subsystem was shown, in section 5.2.1, to be governed by equations (5-5) and

(5-6) in the space-time domain and by equation (5-7) in the wavevector-

A. frequency domain.

By the coupled set of equations (5-7) and (5-44), it can be shown that the

wavevector-frequency description of the forced response of the infinite plate,

fluid loaded on one side, is given by

.' '- <~ ,k I20

(55k, - 2 F z!L -lj} k < Ik

W(k,w)= (5-45)

F(k, )r_ I- 2 1 'k > Ik01

"k k -t - 2-2

Note that, over both ranges of wavevector magnitudes, this input-output

relationship for the composite plate-fluid system has the algebraic form (see

equation (3-59)) characteristic of space- and time-invariant systems. Thus,

4e conclude that the composite system of the infinite plate, fluid loaded on

one side, is a space- and time-invariant linear system.

". By recoqnizing the composite plate-fluid system to be space and time

invariant, we can readily deduce, by equations (3-59) and (5 -15), that the

"'" waveVector f requenc y rfspone, W k ,w) of the inf ini te plate, fluid loaded on

onp , , - i ven by

,-

-..

J%528
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1

k 4 2 + + 2 *2k < ko ,

k0  1 k/k-

G(k, ) = (5-46)

1

k > Iko

(I- - + I rw]

1.k 2k
L 0j

Recall that the wavevector-frequency response, G(k,w), is the wavevector-

frequency transform of the Green's function, g(j,T). It is good practice,

at this point, to ensure that G(k,w) is the causal wavevector-frequency

response: that is, the wavevector-frequency transform of the causal Green's

function. In section 3.4.4, we established that G(k,w) was a causal

* wavevector-frequency response if G(k t) the inverse Fourier transformation

of G(k,w) on w, and its temporal derivatives were zero for T < 0. However,

as is often the case in coupled systems, the form of equation (5-46) is of

sufficient mathematical complexity that one is quickly discouraged from

attempting the inverse Fourier transformation required to obtain G(k,T).

Consequently, we are motivated to address the question of the causality of the

wavevector-frequency response of the fluid-loaded plate (given by equation

(5 46)) by logical, rather than mathematical, arguments.

To this end, we submit the following arguments. The composite plate-fluid

system can be interpreted, according to figure 5-2, as two subsystems arranged

in a feedback loop. The input-output relationship for the plate subsystem

* (equation (5 44)) has the form shown (by equation (3-59)) to be characteristic

of space- and time-invariant systems. From equations (3-59) and (5-44), it

can easily be verified that the wavevector-frequency response of the plate

subsystem is identical to that given by equation (3-114), which was shown to

* characterize the causal Green's function for the infinite plate in vacuo. The

input output relationship for the acoustic half-space subsystem was taken

directly from equation (4-159) (with x set to zero). The causality of this

input output relationship was addressed and ensured in its derivation.

• lnasmuch as (1) the input to the composite system is applied directly to the

5-29
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plate subsystem, (2) the input-output relationships used to model both the

' g plate and half-space subsystems in the wavevector-frequency domain are causal,

(3) the causal output of each of the two subsystems is input directly to the

other subsystem in a feedback loop, and (4) the output of the (causal) plate

system is defined as the output of the composite plate-fluid system, it

follows that the wavevector-frequency response of the composite plate-fluid

system, described by equation (5-46), must be causal.

Let us now shift our focus to the response characteristics of the

fluid-loaded plate in the wavevector-frequency domain. As explained in

section 3.4.6, the wavevector-frequency response can be interpreted as the

complex amplitude of the wave of the form exp{i(k.x + wt)} output from a

system as the result of excitation of the system by the unit amplitude wave,

,_ d expfi(k-x + t)}. Note, by equation (5-46), that the wavevector-frequency

* response of the fluid-loaded plate, like that of the plate in vacuo (see

section 3.4.6), depends only on the magnitude of the wavevector, and not on

Vis direction. As was explained for the case of the infinite plate in vacuo,

this independence of G(k,w) on the direction of k is a reflection of the

spatial invariance of the fluid-loaded infinite plate system. That is, for a

unit amplitude harmonic wave excitation of the plate, the complex amplitude of

the response of the fluid-loaded infinite plate depends only on the wavelength

and frequency of excitation and is independent of the direction of propagation

of the harmonic wave excitation.

Ihe effects of the fluid loading on the wavevector-frtquency response of

an infinite plate can best be illustrated by comparing the response of a

fluid-loaded plate with that of the same plate in vacuo. Figures 5-7(a) and

(b) compare the magnitude and phase, respectively, of the wavevector-frequency

response of an infinite plate, fluid loaded on one side, to that of an

-. identical plate in vacuo as a function of the wavevector magnitude, k, at a
fixed frequency, w.

By figure 5-7(a), it is evident that the fluid loading has a significant

effect on the mignitude of the wavevector-frequency response of the infinite

pldte. Howrvpr, by use of equat ions (3-1 14) and (5 -16) , the reasons for the

d ffer~n fs between the rnii tudes of these wavevector f requency responses can
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Figure 5-7(b). Comparison of the Phases of the Wavevector-Frequency
Responses of Fluid--Loaded and In-Vacuo Infinite Plates

* Figure 5-7. Comparison of the WAavevector-Frequency Responses
of Fluid-Loaded and In-Vacuo Infinite Plates
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easily be understood. Note first that, at wavenumber magnitudes less than the

free wavenumber (k p) of the in-vacuo plate, the magnitude of the wavevector-

frequency response of the fluid-loaded plate is less than that of the plate in

vacuo. This difference results from the additional damping (at wavevector

magnitudes below k0 ) or the additional mass (at wavevector magnitudes above

k0 ) imposed on the plate by the fluid in these respective wavenumber

regimes. The amount of this difference in magnitude of response between

fluid-loaded and in-vacuo plates in this wavenumber region can be shown, by

equations (3-114) and (5-46), to increase as the quantity pc/(vo), the ratio

of the specific acoustic impedance of the fluid (pc) to the inertial impedance

of the plate (vo), increases. Thus, if the fluid impedance is small in

comparison with the inertial impedance of the plate, the effect of the fluid

loading on the magnitude of the wavevector-frequency response of the plate

will be small (except at the wavenumber ko). Conversely, if the specific

* acoustic impedance is large in comparison with the inertial impedance of the

plate, the magnitude of the wavevector-frequency response of the fluid-loaded

. plate will be significantly lower than that of the plate in vacuo.

At the wavenumber kO, the response of the fluid-loaded plate is seen to

be zero, whereas that of the in-vacuo plate is nonzero. Recall, from section

4.3.3.1, that the impedance of the acoustic half space at the surface x3 = 0

becomes infinite at wavevectors equal, in magnitude, to that of the acoustic

IJ wavenumber, Ikol. Inasmuch as the plate motion and the fluid motion must be

" equal at the interface x3 = 0, it follows that the impedance of the coupled

plate-fluid system must also be infinite at wavevectors equal, in magnitude,

to Ikol. Consequently, the wavevector-frequency response of the fluid-

loaded plate is zero at k = k Conversely, equation (3-144) shows the
0.

. wavevector-frequency response of the in-vacuo plate to be nonzero for all

S"wavenumbers below the free wavenumber, k of the plate.Z. p'

Resonance in the wavevector-frequency responses of the in-vacuo and

fluid-loaded plates occurs, at any fixed frequency, when the wavevector of

excitation is equal, in magnitude, to the free wavenumbers, k and kp', of7 pptie re,pect ve plate;. As is evident in fiqure 5-1(a), the maqnitude of the

i 1/(rlII) for both the iluid-loaded and in-vacuo plates. However, because the
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free wavenumber of the fluid-loaded plate is greater than that of the plate

in vacuo, resonance occurs at a higher wavenumber in the fluid-loaded plate

than in the in-vacuo plate.

For wavevector magnitudes large in comparison with the resonance wave-

numbers, the wavevector-frequency responses of both the fluid-loaded and

in-vacuo plates are governed by the flexural rigidity of the plate (i.e., the

term Dk4 in equations (3-114) and (5-46)). Inasmuch as figure 5-7(a)

compares the magnitudes of the wavevector-frequency responses of identical

plates, fluid loaded and in vacuo, it is not surprising that the magnitudes of

the responses of the two plates are approximately equal at high wavenumbers.

Figure 5-7(b) compares the phases of the wavevector-frequency responses of

the fluid-loaded and in-vacuo plates at the fixed frequency W. As explained

* in section 3.4.6, the phase of the wavevector-frequency response can be

interpreted as the phase of each harmonic wave component of the displacement

field relative to that of the corresponding harmonic wave component of the

excitation field. At wavevectors less, in magnitude, than the resonance

wavenumber, kp, the response of the in-vacuo plate is dictated primarily by

inertial effects (i.e., the term pw in equation (3-114)), and the

displacement is nearly out of phase with the applied force. This same

argument applies to the fluid-loaded plate for wavevector magnitudes greater

than k0 and less than kp , where the inertia of the plate is augmented by

the inertia associated with the fluid loading. For wavevectors less, in

magnitude, than kO , the fluid acts as additional damping to the plate,

thereby reducing the phase lag between output and input relative to that shown

* •for the in-vacuo plate. When the plate is excited by a harmonic wave

characterized by a wavevector nearly equal (but less) in magnitude to that of

the acoustic wavenumber, the damping force associated with the fluid loading

becomes extremely large, and the displacement lags the applied force by

90 degrees. At resonance, the harmonic waves of displacement of both the

fluid-loaded and in-vacuo plates lag the associated waves of applied force by

90 degrees. For harmonic wave excitations characterized by wavevectors

larger, in magnitude, than the resonance wavenumber, the responses of both the

fluid loaded and in-vacuo plates are governed by the flexural rigidity of the

plates (i.e., the term Dk4  in the respective wavevector-frequency responses),

5-33
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and the resulting wave of displacement is nearly in phase with the excitation.

The above example illustrates that the fluid-loaded plate responds most

strongly to harmonic wave components of excitation that are characterized by

wavevectors equal, in magnitude, to the free wavenumber of the fluid-loaded

plate at the frequency of excitation. This behavior parallels that observed

(in section 3.4.6) for the in-vacuo plate.

5.3.2 The Forced Response of a Finite, Simply Supported Plate With Fluid

Loading on One Side

In this section, we develop the wavevector-frequency description of the

forced displacement field of a finite, simply supported plate subjected to

fluid loading on one side. The composite plate-fluid system of interest is

* illustrated in figure 5-8. Here, a thin plate (with flexural rigidity D, mass

per unit area p, damping coefficient per unit area r, and dimensions L by

L2 ) is simply supported in a rigid baffle of infinite extent. The space

above the plate and baffle, x > 0, is occupied by an acoustic fluid having

a density p and a speed of sound c. The space x3 < 0 is vacuous. The plate
is excited into motion by a force per unit area, f(x,t), applied to the bottom

surface of the plate. We wish to determine the displacement field of the

plate resulting from this externally applied excitation.

A schematic diagram of this composite system is illustrated in

figure 5-9. The baffled, simply supported plate is excited into motion by

the externally applied forcing field, f(x,t). The resulting displacement

~ field, w(x,t), is imposed on the fluid in the acoustic half space at the

plate-fluid interface (x = 0), thereby exciting a pressure field,
3

p(x,x 3,t), throughout the acoustic half space, x3 > 0. This pressure

field, acting over the top surface of the plate, produces an additional input

* field, p(x,O,t), over the upper surface of the plate and baffle that acts

opposite in direction to the externally applied forcing field. The output of

this composite system is the displacement field of the plate, w(x,t).

-• B,/ giure 5 9, it is evident that the composite system of the f luid-

loaded, .imply supported plate can be interpreted as two coupled subsystems:

'All
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Figure 5-8. Geometry of the Finite, Simply Supported Plate
CWith Fluid Loading on One Side

one subsystem represents the simply supported plate and the surrounding baffle

and the second subsystem represents the acoustic half space. The couplings

between these systems are identical to those occurring in the fluid-loaded

infinite plate, which were described and discussed in section 5.1.3.

The reader might be justifiably curious as to why the simply supported

plate and the surrounding rigid baffle are treated as a single subsystem. The

answer is that, by including the rigid baffle in the subsystem associated with

the simply supported plate, the input-output relationship for the plate-baffle

subsystem can be directly obtained from that of the forced response of the

imply supported plate, which was treated in section 4.3.3.2. That is,
- because the baffle is assumed to be rigid (i.e., of infinite impedance for all

V: 5 -35
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COMPOSITE PLATE - FLUID SYSTEM

fix ,t)
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FINITEw(x,t) I~~PLATE
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p(x,O,t) w(x't)

ACOUSTICd "HALF SPACE

-, Figure 5-9. Schematic Diagram of Fluid-Loaded,
Simply Supported Plate System

wavevectors and frequencies), the displacement, w(x,t), normal to the plane of

the plate and baffle is then known to be zero for all x outside the boundaries

of the plate: that is, outside 0 < x1 < L and 0 < x2 < L 2 . This is

exactly the displacement field that was assumed to exist outside the confines

of the simply supported plate in the forced system treated in section

4.3.3.2. Thus, the motivation for including the rigid baffle in the subsystem

associated with the simply supported plate was to enable us to use the

relationships developed in section 4.3.3.2 to model this subsystem.

By reference to equation (4-210) of section 4.3.3.2, the displacement

field output from the subsystem associated with the baffled, simply supported0
plate as a result of the forcing fields f(x,t) and -p(x,O,t) can be written as

" w(ft) f g(x,x 0 t t0 ){f(x 0 ,t0 ) p(x0 ,0,t0 )} dx0  dt (5-47)

w xt)- (•7
0-11
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for all x and t. Here, g(X, xt - to) is the exact and causal Green's

function for the baffled, simply supported plate, which was shown, by equation

(4-205), to be given by

2I ()m(X)(3(,O)amn(xO)]

( X o t - to) 2L D2 2 2 2

-om=l nl iL) + (nir/L 2) 2 + ir - 2

exp{iuo(t - to)} dw , (5-48)
~0

where amn(x) are the normal modes of the simply supported plate defined by

(x) = sin(mrx1/L1 )sin(nnx 2/L2) (5-49)
mn

and 3(x) is the two-dimensional space-limiting function defined by

((x) = {U(xl) -U(x 1 - L1 )}{U(x2) - U(x 2 - L2)} (5-50)

It should also be recalled (from section 4.3.3.2) that, in equation (5-47),

f(x,t) is equal to the force per unit area applied to the under surface of the

* plate in the spatial range 0 < xI < L and 0 < x2 < L2, but can be

arbitrarily specified outside this range inasmuch as forces outside the

physical extent of the plate act only on the baffle, which is rigid.

It is straightforward to show, from equation (5-47), that the wavevector-

frequency transform, W(k,w), of the space-time displacement field is related

to the wavevector-frequency descriptions of the forcing and surface pressure

fields, F(k,w) and P(k,O,w), by

- .- 2
W(k,w) = (2 )- G(k,-_,w){F(_, ) - P(S_,O,w)J d_ . (5-51)

* Here, G(k,a,w) is the two-wavevector-frequency response of the system (i.e.,

the multiplp Fourier transform of g(X,%,T) on the variables x, 0 and T),

* 'which is given by

4 1 mn (k) Imn(-)
G(k, W) - 4 _ 2 -- (b-52)

1 2 Dk 4 1 r2"-'"-m=l n=! mn
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where

k Ir/L 1  4- (nn/L2  (5-53)

and

I mn(k) = I (x)mn(X)exp(-ik'x) dx (5-54)

-00

Equation (5-51), with equation (5-52), defines the relationship between the

wavevector-frequency descriptions of the input and the output fields for the

subsystem associated with the baffled, simply supported plate. This input-

output relationship has the mathematical form shown, in section 4.3.2, to be

characteristic of a space-varying, time-invariant system.

The subsystem associated with the acoustic half space is identical to that

used in the coupled system that represents the fluid-loaded infinite plate in

sections 5.2.1 and 5.3.1. The causal relationship between the wavevector-

frequency descriptions of the boundary displacement and the resulting surface

pressure was given by equation (5-7). As was argued previously, this

relationship has the mathematical form characteristic of a space- and

time-invariant system.

The composite system of the fluid-loaded, simply supported plate

surrounded by an infinite rigid baffle is mathematically modeled by the

coupled set of equations (5-7) and (5-51). By substitution of equation (5-7)

into equation (5-51), it can be shown that the wavevector-frequency

s. ' description of the forced displacement of the baffled, simply supported plate,

fluid loaded on one side, is governed by

W(k,c ) (21) t2  G(k_,cqw) F(_,w) do_- ipcw do

* 1 2 2-
01 %k I /k 0

2" G(k, -a,w)W(o, )
-. p do (5-55)

S2 k0 2

00
.5-38
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whr 01 2 + 2
where a = --I2 + t2 Note, by equation (5-55), that the input-

output relationship for the fluid-loaded, baffled, simply supported plate in

the wavevector-frequency domain is expressed in the form of an integral

equation for W(k,w). This mathematical form of input-output relationship was

shown, in section 4.3.1.2, to be characteristic of space-limited,

time-invariant linear systems.

The solution of the integral equation (5-55) for W(k,w), subject to the

constraints imposed by the simply supported boundary conditions and the

surrounding rigid baffle, presents a formidable mathematical challenge.

However, a conceptually simple (although computationally inefficient) approach

to obtaining a solution for W(k,w) is to assume that the space-time displace-

ment and forcing fields can be expressed as a weighted superposition of the

in-vacuo normal modes of the simply supported plate. That is, assume that the

w(x,t) and f(x,t) can be expressed as

w(It) - ( W( )[(X)mn (X)exp(iwt) dw (5-56)

-~m=1 n=l

and

f ( ,t) - B ? a ) )exp(i wt) d (5-57)
21r m=1 mn- " - m~l n=l

As expressed in the form of equation (5-56), the displacement field of the

baffled, fluid-loaded plate satisfies the simply supported boundary

conditions and the requirement that the displacement be zero over the

surface of the rigid baffle. The form of equation (5-57) reflects the fact

that the externally applied forcing field acts only over the surface of the
0 plate.

By assuming that the space-time displacement and forcing fields exist in

the forms of Pquations (5-56) and (5-57), it follows (by use of equation

(5-54)) that W(k,w) and F(k,w) can be written in the form

5-39
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W = W ( I (k_) (5-58)

m=l n=l

and

F0 (k0 F mWIron(k_) (5-59)

'. m=l n=l

By substituting equations (5-52), (5-58), and (5-59) into equation (5-55), we

obtain the following relationship between the frequency-dependent modal

coefficients of the displacement and forcing fields:
fields

W n W(W)Imn (k)

m=l n--I

2L ( u~ Dkuq Iupq-W)luv-_ do-

2 _ 2 + ir I
12p=1 q=l u: v=l -oo_

V

Or~ 0 0k 4 (() Ml U Imn(q)I*u(2)
2. 2mn uvd }mn( I

"'3 ~ ~4 2 r illo

m=l n=l u=1 v=l Dkuv _ 2 -1

(5-60)

By multiplying equation (5-60) by I*. (k) and integrating over all k we can- - 1J

employ the orthogonality condition (derived in section 4.2.2)

"I (k [ _ k T ( 5-61 )

. Imn(k)I*qs( k) dk - 1 L2
6mq ns

to show thdt
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W Fij( )4

D k ij + i rw
VV

PCW mn(  f mn(-)~ (- d

2k. 2 1 -

ir2LI1L 2m=1 n=1 Dk ij4 _ p -rw 111<1kol 01 2 -2/ko0 2

' 2 00 00 W mn( ) I mn(-)I*ij ( )

i+ 2L I I Dkij4 p 2 + iJr w f 02 -a
w 1 2 m=1 n=1 k 0 a

aP,

(5-62)

* If we then define

I * ( !_ ) ' ( _)

r mnqs(w) 2I J - / do (5-63)
ir LL 2 21_2 I _l<_koI 1 - 1k

*i and

I * m(n)I (o)
Pmnqs(.) _ - in c~-da , (5-64)
mq 2L L 2 2

1 2 I~j> Ik0I o k-

equation (5-62) can be written

00 04- 2. (W) +2

{k - W 2 rw (w) 4-iur (ca))W (wa) F (,0)
mn irwJWmn( ) Znqs mnqs qs mn

q=l s=l

(5-65)

By recalling that the free wavenumber of the space- and time-invariant plate

in vacuo is defined by

* k (ap() 4 2 D , (5-66)
p
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we can rewrite equation (5-65) in the form

4_ ]
,..mq nsqs p mqns
q=l s=l

r [ m rqmnD i - mq6ns r Wqs Fmn

Equation (5-67) represents a doubly infinite set of coupled equations for

the frequency-dependent modal coefficients of the plate displacement,
V
W (u), in terms of the frequency-dependent modal coefficients of the
mn',
external forcing field, Fmn(w). Owing to the coupled nature of these

equations, a single modal component of the forcing field excites many modal

components of displacement. This behavior is in sharp contrast to that

observed in the forced response of the simply supported plate in vacuo (see

equation (4-197) of section 4.3.3.2), where each modal component of the

forcing field excited only the corresponding modal component of displacement.

Clearly then, the coupling between a single modal component cf force and the

infinite set of modal coefficients of the displacement results from the fluid

loading of the plate.

The fluid loading of the plate is applied by the pressure field (that is

induced throughout the acoustic half space by the motion of the plate) acting

on the upper surface of the plate. By equation (4-146) of section 4.3.3.1,

the space-time description of the pressure field over the surface x3  0 can

be expressed as

%p(x,O,t) = (2I) P(k,O, )exp{i(k.x - t)}dk dw (5-68)

r for all x and t. However, over the surface of the plate, 0 < xI < L and
0 < x < L2 , p(x,O,t) can be expressed in the form

, p xO 1 Pmn

TT[x.Q. P (w)cm (x)exp( wt d ,
*.-_- - m mn mn*

- 7 0 2  2K

(5-69)
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By use of equations (5-7), (5-58), (5-68), and (5-69), it follows that

i u=l v=l

00 0 iPW W w)I(k)
= (21) - 2 1 l ( C gs qs - exp[i(k.x)] dk

S 2  2

Ki>1k0 1 Nk k

for 0 < x < L1 and 0 < x2 < L By multiplying equation (5-70) by

•.nn (x) and integrating over 0 < x < L and 0 < x < L we can use-. ' mn - 1 - 1- 2 - 2'

u.. lt ons (I-54), (5-54) , (5-63), and (5-64) to shov. that

" 2

Pmn(W) I {i r mnqs(u)) - 1mnqs ()}Wqs(-) (5-71)

q=l s=l

r"Euat ion (5-11), which defines the complex, frequency-dependent amplitude of

the mn -th modal component of the pressure field acting over the upper surface

% of the plate, clearly shows that a single modal component of the displacement

field, w (w), produces an infinite number of modal components of pressure
qs

on the uppor surface of the plate. These modal components of pressure, in

0 turn, excite Lhe corresponding modes of displacement of the plate. This

pnenomenon is known as modal coupling.

lhe presence and degree of modal coupling is dictated, in both equations
* (5-61) and (5-71), by the frequency-dependent quantities rmnqs and m

mnqs mnqs'
defined by equations (5-63) and (5-64), respectively. It is desirable to

. h, nterprt the roles of these quantities on the physics of the plate motion.

S. i ,J , ', ..n, by u,,e of equat ions (5-54), (5 63), and (5-64), that

r nd 3 are real quantities. Further, by equation (5-11), it is
rrn (qI mnqs

5-43

..

F Zr ,



0 TO 8209

evident that the combination of terms

icrmnqs _ 2s,, U .mnqs(W)} Wqs(W)

can be interpreted, at any given frequency, as the contribution to the mn-th

modal component of the pressure acting over the upper surface of the plate

-resulting from the qs-th modal component of the displacement field of the

plate. More specifically, it can be shown by use of equation (5-56) that

iW (w) can be interpreted as the complex frequency-dependent amplitude
qs

of the qs-th modal component of the normal velocity field of the plate.

Therefore, because r is real, the term iwr ()W (w) describes a
mnqs mnqs qs

- contribution to the mn-th modal component of pressure that is proportional to

the qs-th modal component of the velocity field of the plate. Inasmuch as

forces per unit area that are proportional to velority are normally associated

i'.th losses (e.g., damping) to the system, the term r can be interpreted
mng s

a. additonal rl3Mpin j per unit area of the plate resulting from the coupling

bet,:.een mn-th and qs-th in-vacuo modes of the plate caused by the presence of

the fluid. This interpretation is supported by equation (5-63), which shows

that r (u) is proportional to an integral over the supersonic (i.e.,,'-,. •mnqs

Jul < 1koj) wavevector Lumponents of the acoustic half space. Recall, from

. section 4.3.3.1, that these supersonic wavevector components are associated

with -avo,, that propagate away from the boundary (the plate-baffle surface)

and, thereby, represent a loss mechanism to the plate.

By similar reasoning, the term -w W ( ) can be interpreted as the
q s

complex amplitude of the qs-th modal component of the acceleration field of

the plate in a direction normal to its surface. Because is real, the"':""2 %7mnqs
2 V

- term - p mnqs()W qs(w) represents a contribution to the mn-th modal

component of the pressure acting over the upper surface of the plate that is

proportional to the qs th modal component of the acceleration field of the

plate. Because forces per unit area that are proportional to acceleration are
associated with the inertia (or mass) of the system, the term mq can be

mnqs
int ,rpr fted 3 an additiona2 mass imposed on the plate as a result of the

oup inj ot thr mn th and gs th modes caused by the presence of the fluid. As

- c ri tiy .qu, ion 6 64), this additional mass is proportionai to an integral

of the subsonic (i.e., 1o3 > Jk0 j) wavevector components of the acoustic

Il
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half space. These subsonic components were shown, in section 4.3.3.1, to be
associated with waves that did not propagate away from the boundary, but

decayed in amplitude with increasing distance from the boundary, (i.e., the
"p plate). As these waves do not propagate away from the plate, they do not

represent a loss mechanism to the plate. Rather they can only represent
reactive forces (i.e., inertia or stiffness) on the plate. Davies argued

that the terms containing v mnqs lead to additional virtual mass of the
plate. Therefore, V.q is interpreted as additional mass to the plate

rather than additional stiffness.

By the above arguments, we conclude that the modal coupling, introduced by
the physical coupling between the plate and the fluid, has the effect of
adding mass and damping to the simply supported plate. The reader will recall

_" that the effects of fluid loading on the space-invariant, infinite plate were
to increase the apparent mass and damping of the plate. Thus, we see that the
effects of fluid loading are similar between finite, simply supported plates

ind infinite, space-invariant plates.

If we define

4 4 "sCmnqs()]
A (M) = ( k -k +mnqs mq ns qs p mqns . •

+ +-n imnqs (5-72)
0. .q ns r

then equation (5-67) can be rewritten as

S V'-.S mq(V F (o
"-' A ) qs( )  _ mn

A (D)w M = (5-73)

mn qs qlsD
" " "q = l s = l

0 In principle, although not necessarily in practice, a four-dimensional,
frequency-dependent matrix, B M() can be found that satisfies the

mnqs
relat ion-hip

1

B -w" B. ( ) (5-314

5-45
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That is, the matrix Bmnqs () is the inverse of the matrix Amnqs( ) at the

frequency w. By use of equations (5-73) and (5-74), it follows that W mn(W)

has the form

V
5.' 00 00

W mn (W) B Bmnqs (J) D (5-75)

q=l s=l

Therefore, by equation (5-58), the wavevector-frequency description of the

displacement field of the baffled, simply supported plate, fluid loaded on one

side, has the form

W(k,w) = mnqs ) I mn(k) (5-76)

m=l n=l q=l s=l

Equation (5-76) shows that, at any fixed frequency , the wavevector

dependence of the displacement field of the baffled, fluid-loaded, simply

supported plate is specified by a weighted summation of the wavevector

transforms of the space-limited natural modes of the in-vacuo plate, Imn(k),

"" over all mode numbers, m and n. By reference to equation (4-217) of section
4.3.3.2, it is evident that the wavevector dependence of the displacement

field of the in-vacuo, simply supported plate is also specified by a weighted

summation of I mn(k) over all m and n. However, a comparison of equations

(4-217) and (5-76) shows that the modal weights applied to I (k) are6"-'.'."mn -

considerably more complicated for the fluid-loaded plate than for the in-vacuo

plate. Determination of the modal weights, W (w), for the fluid-loaded,
:::::mn

simply supported plate requires, by equation (5-75), knowledge of B M(),0, mnqs
the inverse of A (u). Inasmuch as the mode numbers, m and n, range from- mnqs

I to infinity, it is evident that B (w) cannot be determined exactly.- z..-.mnq s
Therefore, only approximate solutions can be obtained for the wavevector-

frequency (or space-time, for that matter) characteristics of the baffled,

simply supported, fluid-loaded plate. A variety of such approximate solutions
4 5

,. are presented by Junger and Feit and Davies. The majority of these

approximate solutions require arguments too complex and lengthy to be

presented here. However, to provide some insight into the response

characteristics of the baffled, fluid-loaded, simply supported plate, we will
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present one, somewhat simplistic, example of an approximate solution: the

example of a light fluid loading.

Light fluid loading is defined as that situation in which the modal

amplitude of the pressure, Pm(w) defined by equation (5-71), is small inmn '

V comparison with the externally applied modal force, Fmn(w ) . Thus, in the

case of light fluid loading, the forces resulting from modal coupling are

small, and each modal component of the applied force is primarily balanced by

the modal forces associated with the stiffness and inertia of the plate.

Under these assumptions, equation (5-65) can be rewritten

j { 4_ [ mnmn(A)) ] + i[r + rmnmn(w)]ciWmnn()+ £mn(=) in (c)4 2
'-Dmn mnn mnm= Fnmnmn(

(5-77)

where c ( ) denotes the contribution to the modal pressure resulting from
mn

the sum of the crosscoupled terms (i.e., q i m and s ' n) in equation (5-71).

That is,

( = I [-2 mnqs() + ir mnqs()] Wqs(w) (5-78)

q=l s=l
qem spn

We now assume that ( ) is of the same order of magnitude as the modal. mn

pressure, m and is therefore sufficiently small, in comparison with
m.V

the externally applied modal force, F (w), to be neglected. Under this
mn

* assumption, it follows that the modal amplitudes, Wmn( can be

approximated by

V F N()
W () (5-79)
mn {Dkn 4  [+ 2 +nmn(c)]3 - i[r + rmn )J }

It therefore follows that the wavevector-frequency description of the

displacement field of the baffled, lightly fluid-loaded, simply supported

plate can be approximated by

5-47
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W(k, ) - =mn mn(5-0
W( 'W {Dk4 h+V M W2 +ir+r 0)]} (-0

ml n=l {+ mnmn( ))b2 + i[r + rmnmn()}

Comparison of equation (5-80) with equation (4-217) of section 4.3.3.2

* shows that the wavevector-frequency description of the displacement field of

the lightly fluid-loaded, simply supported plate has a mathematical form

similar to that of the simply supported plate in vacuo. Indeed, this

comparison reveals that the effect of the light fluid loading is to increase

the apparent mass and damping of the plate. The additional mass and damping

are modally dependent quantities, which, in this first order approximation,

result only from the autocoupled (m = q and n = s) modal contributions to the

pressure field at the surface of the plate.

* The similarity in the mathematical forms of equations (5-80) and (4-217)

implies a similarity between the wavevector-frequency characteristics of

in-vacuo and lightly fluid-loaded, simply supported plates. By arguments

presented in section 4.3.3.2, certain wavevector-frequency characteristics of

the forced response of the in-vacuo, simply supported plate were deduced from

equation (4-217). By taking proper account of the differences in inertia and

damping between equations (4-127) and (5-80), a similar set of wavevector-

frequency characteristics can be inferred for the forced response of the

lightly fluid-loaded, simply supported plate.

Recall that at any resonance frequency, ,MN' the magnitude of the

wavevector-frequency response of the simply supported plate in vacuo was

* argued to be relatively large in the neighborhoods of those modal wavevectors

associated with the resonance (i.e., where Ik = kMN) and in the

neighborhoods of those modal wavevectors associated with relatively large

modal forces. By similarity arguments, it follows that, at any resonance

* frequency of the lightly fluid-loaded, simply supported plate, wMN ' the

magnitude of the wavevector-frequency response will be relatively large in the

neighborhoods of those modal wavevectors associated with the resonance (i.e.,

where Jk= k MN) and in the neighborhoods of those modal wavevectors
associated with relatively large modal forces. Here, wMN is the natural

frequency of the MN-th mode of the lightly fluid-loaded plate, which is
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1%

defined as that frequency at which

4 ]2

DkMN4  IV + PMNMN(w) 0 . (5-81)

In contrast, the MN-th modal natural frequency of the in-vacuo plate was

defined as that frequency satisfying

4 2
DkMN - = 0 . (5-82)

tMN

Thus, we see that lightly fluid-loaded and in-vacuo simply supported plates

have similar wavevector-frequency characteristics at resonance. However,

owing to the additional apparent mass associated with the fluid loading, the

resonance frequencies of the lightly fluid-loaded plate differ from those of

the plate in vacuo.

In section 4.3.3.2, we argued that, at a nonresonance frequency w0' the

in-vacuo plate responded most strongly to those modal forces characterized by

modal wavenumbers, k mn, nearest to the free wavenumber, k p(WO), of the

in-vacuo plate: that is, those modal forces characterized by modal numbers, m

and n, such that

k (m/L12 2

kmn = (mn/L 1) (nir/L 2 ) . (5-83)

By similarity arguments, the lightly fluid-loaded plate also responds most

strongly at a nonresonance frequency to modal forces characterized by modal

wavenumbers, k , nearest to the free wavenumber of the lightly fluid-loaded

-, plate, k ( 0 ), which (by equation (5-80)) can be approximated by

" :" 4 / U2/
",' k (/)= [D* nm (O (5-84)

Thus, off resonance, both the in-vacuo and lightly fluid-loaded plate respond

most strongly to modal forces characterized by modal wavenumbers nearest to

f: the free wavenumbers of the respective plates. However, owing to the

" additional mass associated with the fluid loading, the free wavenumber of the

lightly fluid loaded plate differs from that of the plate in vacuo.
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It was demonstrated in section 4.3.3.2 that excitation of the in-vacuo

simply supported plate by a single wavevector-frequency component of the

externally applied forcing field produced a response, at the frequency of

excitation, that was comprised of a weighted distribution of wavevectors.
This conversion of a single wavevector component of the input into multiple

qavpvector components of response was attributed to wavevector scatterin at

the boundaries of the plate. This mechanism for wavevector conversion is, of

course, also present in the lightly fluid-loaded, simply supported plate.

However, as was shown above, fluid loading provides an additional mechanism

for wavevector conversion in the simply supported plate: that is, modal

coupling. Whereas only autocoupling of modes is assumed in the light

fluid-loading approximation, it should be recognized that the forces

associated with crosscoupled modes can be significant for heavier fluid

loadings.

54 CONCLUDING REMARKS

In this chapter, we have demonstrated that spatially distributed,

multicomponent linear systems can be interpreted as an assemblage of coupled

subsystems, where each subsystem represents a single physical component of the

composite system and the couplings between subsystems reflect appropriate

interactions betw.een the corresponding physical components. By use of this

interpretation, we argued that the mathematical model of a multicomponent

system is formulated by appropriately coupling the assemblage of mathematical

models of the subsystems associated with the composite system. To demonstrate
this procedure for the formulation and solution of mathematical models of

* multicomponent systems, we treated the free and forced vibrations of an

infinite plate with fluid loading on one side and the forced vibration of a

baffled, simply supported plate with fluid loading on one side as illustrative

examples.

These illustrative examples reveal that a primary effect of the fluid

loading, common to both the infinite and simply supported plates, is to

increase the apparent mass and damping of the plate. lhe increase in apparent

mas, though frequency dependent, causes the free wavenumber of the fluid-

loaded plate to be greater, at any frequency, than that of the same plate
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in vacuo. Inasmuch as the free wavenumber defines the resonance

characteristics of the plate in the wavevector-frequency domain, it follows

that the fluid loading alters the resonance behavior of infinite and space-

limited plates. In the case of the simply supported plate, it was shown that

the fluid loading provides a means for wavevector conversion supplemental to

the scattt'-q mechanism associated with reflections at the boundaries of the

in-vacuo plate. This additional means of wavevector conversion is modal

coupling, whereby a single modal component of displacement of the plate

produces a pressure field at the surface of the plate that is comprised of

many modal components. These modal components of the pressure field act as

*additional modal forces on the plate and produce corresponding modal responses

of the plate.

The response of multicomponent systems comprised of structural and fluid

0 components is the focus of structural acoustics. The response of interest

(i.e., output) in such systems can be either the vibratory field of the

structure or the acoustic pressure field produced by the vibration of the

structure. The illustrative examples for this chapter are a subset of perhaps

the most exhaustively studied class of problems in structural acoustics: the

vibration of, and radiation from, plates in contact with an acoustic fluid.

Owing to space limitations and the desire to provide a simple and consistent

set of illustrative examples of coupled systems, the examples presented here

focus only on the vibratory displacement fields of the simplest space

* -invariant and space-limited forms of plate-fluid systems: that is, the

infinite and simply supported fluid-loaded plates. Space limitations also

restricted the detail to which the effects of fluid-loading were examined. To

* supplement the treatment of coupled plate-fluid systems provided here and to

demonstrate the variety of plate-fluid systems addressed in the literature, we

close this chapter with a brief listing of references. These references can

be used as a springboard by the interested reader to further expand his

sources of information.

The vibration and pressure fields associated with uniform, infinite plates

under various forms of excitations constitute the most extensively studied

class of coupled systems in structural acoustics. Examples of these systems

are treated in such standard texts as Junger and Feit and Morse and
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Ingard. 7 However, as late as 1979, there was continuing interest 
8 ,9,l0

(and some confusion) regarding the free waves of fluid-loaded plates. The

vibration and acoustic fields associated with fluid-loaded infinite plates are

V ,usually obtained by asymptotic methods. Examples of such approaches are
presented by Morse and Ingard and by Creighton.1213

The vibration and acoustic fields of the simply supported, rectangular

plate are treated by Junger and Feit. 14  However, for a detailed treatment

of the modal coupling terms (i.e., v mn and r ) and high and low,'. "' mnqs mnqs

frequency approximate solutions of the displacement and radiated fields of

fluid-loaded, simply supported plates, the reader is referred to Davies. 15

16
In addition, Maidanik devised a method for classifying the various modes

of simply supported plates in terms of their radiation efficiencies.
13Creighton and Innes apply asymptotic methods to obtain approximate

* solutions for the vibration and radiation fields of certain other examples of

fluid -loaded, space-limited plates.

Finally, the vibration and acoustic radiation fields of beam-stiffened,

fluid-loaded plates have received much attention over the past 25 years. This

work has progressed from the consideration of the vibration and acoustic

7 fields of a single beam attached to a plate, 17,18 through the treatment of

the vibration and pressure fields associated with periodically stiffened,

fluid-loaded plates, 19  to the prediction of the vibratory and radiated
20,21

fields of a plate with any number of supports.

The above refe-ences illustrate the variety of coupled plate-fluid systems

encountered in structural acoustics and provide a starting point for readers

" interested in such systems.

5)-
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